Kernel Adaptive Metropolis-Hastings

Arthur Gretton,*

*Gatsby Unit, CSML, University College London

NIPS, December 2015
Metropolis-Hastings MCMC

- Unnormalized target $\pi(x) \propto p(x)$
- Generate Markov chain with invariant distribution p
 - Initialize $x_0 \sim p_0$
 - At iteration $t \geq 0$, propose to move to state $x' \sim q(\cdot|x_t)$
 - Accept/Reject proposals based on ratio

$$x_{t+1} = \begin{cases} x', & \text{w.p. } \min \left\{ 1, \frac{\pi(x')q(x_t|x')}{\pi(x_t)q(x'|x_t)} \right\} \\ x_t, & \text{otherwise.} \end{cases}$$

- What proposal $q(\cdot|x_t)$?
Unnormalized target $\pi(x) \propto p(x)$

Generate Markov chain with invariant distribution p
- Initialize $x_0 \sim p_0$
- At iteration $t \geq 0$, propose to move to state $x' \sim q(\cdot|x_t)$
- Accept/Reject proposals based on ratio

$$x_{t+1} = \begin{cases} x', & \text{w.p. min} \left\{1, \frac{\pi(x')q(x_t|x')}{\pi(x_t)q(x'|x_t)}\right\}, \\ x_t, & \text{otherwise.} \end{cases}$$

What proposal $q(\cdot|x_t)$?
- Too narrow or broad: \rightarrow slow convergence
- Does not conform to support of target \rightarrow slow convergence
Adaptive MCMC

- **Adaptive Metropolis** *(Haario, Saksman & Tamminen, 2001):* Update proposal $q_t(\cdot | x_t) = \mathcal{N}(x_t, \nu^2 \hat{\Sigma}_t)$, using estimates of the target covariance.
Adaptive MCMC

- **Adaptive Metropolis** *(Haario, Saksman & Tamminen, 2001):* Update proposal \(q_t(\cdot | x_t) = \mathcal{N}(x_t, \nu^2 \hat{\Sigma}_t) \), using estimates of the target covariance.
Adaptive MCMC

- Adaptive Metropolis \((\text{Haario, Saksman & Tamminen, 2001})\):
 Update proposal \(q_t(\cdot | x_t) = \mathcal{N}(x_t, \nu^2 \hat{\Sigma}_t)\), using estimates of the target covariance

Locally miscalibrated for strongly non-linear targets: directions of large variance depend on the current location
Motivation: Intractable & Non-linear Targets

- **Previous solutions** for non-linear targets: Hamiltonian Monte Carlo (HMC) or Metropolis Adjusted Langevin Algorithms (MALA) (Roberts & Stramer, 2003; Girolami & Calderhead, 2011).
- Require **target gradients and second order information**
Motivation: Intractable & Non-linear Targets

- **Previous solutions** for non-linear targets: Hamiltonian Monte Carlo (HMC) or Metropolis Adjusted Langevin Algorithms (MALA) (Roberts & Stramer, 2003; Girolami & Calderhead, 2011).
- Require target gradients and second order information

Our case: not even target $\pi(\cdot)$ can be computed – **Pseudo-Marginal MCMC** (Beaumont, 2003; Andrieu & Roberts, 2009).
Bayesian Gaussian Process Classification

Example: when is target not computable?

- **GPC model**: latent process f, labels y, (with covariate matrix X), and hyperparameters θ:

$$p(f, y, \theta) = p(\theta)p(f|\theta)p(y|f)$$

$$f|\theta \sim \mathcal{N}(0, K_\theta)$$ GP with covariance K_θ
Bayesian Gaussian Process Classification

Example: when is target not computable?

- **GPC model**: latent process f, labels y, (with covariate matrix X), and hyperparameters θ:

 $$p(f, y, \theta) = p(\theta)p(f|\theta)p(y|f)$$

 $$f|\theta \sim \mathcal{N}(0, \mathcal{K}_\theta) \text{ GP with covariance } \mathcal{K}_\theta$$

- **Automatic Relevance Determination (ARD) covariance**:

 $$(\mathcal{K}_\theta)_{ij} = \kappa(x_i, x_j'|\theta) = \exp \left(-\frac{1}{2} \sum_{s=1}^{d} \frac{(x_i,s - x_j',s)^2}{\exp(\theta_s)} \right)$$
Pseudo-Marginal MCMC

Example: when is target not computable?

- Gaussian process classification, latent process f

\[p(\theta|\mathbf{y}) \propto p(\theta)p(\mathbf{y}|\theta) = p(\theta) \int p(f|\theta)p(\mathbf{y}|f, \theta)df =: \pi(\theta) \]

... but cannot integrate out f
Pseudo-Marginal MCMC

Example: when is target not computable?

- **Gaussian process classification**, latent process f

 \[p(\theta | y) \propto p(\theta) p(y | \theta) = p(\theta) \int p(f | \theta) p(y | f, \theta) df =: \pi(\theta) \]

 ... but cannot integrate out f

- MH ratio:

 \[\alpha(\theta, \theta') = \min \left\{ 1, \frac{p(\theta') p(y | \theta') q(\theta | \theta')}{p(\theta) p(y | \theta) q(\theta' | \theta)} \right\} \]
Pseudo-Marginal MCMC

Example: when is target not computable?

- **Gaussian process classification**, latent process f

\[
p(\theta | y) \propto p(\theta)p(y|\theta) = p(\theta) \int p(f|\theta)p(y|f, \theta)df =: \pi(\theta)
\]

... but cannot integrate out f

- MH ratio:

\[
\alpha(\theta, \theta') = \min \left\{ 1, \frac{p(\theta')p(y|\theta')q(\theta'|\theta)}{p(\theta)p(y|\theta)q(\theta'|\theta)} \right\}
\]

- **Filippone & Girolami, 2013** use Pseudo-Marginal MCMC: unbiased estimate of $p(y|\theta)$ via importance sampling:

\[
\hat{p}(\theta | y) \propto p(\theta)\hat{p}(y|\theta) \approx p(\theta)\frac{1}{n_{\text{imp}}} \sum_{i=1}^{n_{\text{imp}}} p(y|f^{(i)}) \frac{p(f^{(i)}|\theta)}{Q(f^{(i)})}
\]
Pseudo-Marginal MCMC

Example: when is target not computable?

- **Gaussian process classification**, latent process f

 \[
p(\theta | y) \propto p(\theta) p(y | \theta) = p(\theta) \int p(f | \theta) p(y | f, \theta) df =: \pi(\theta)
 \]

 ... but cannot integrate out f

- **Estimated** MH ratio:

 \[
 \alpha(\theta, \theta') = \min \left\{ 1, \frac{p(\theta') \hat{p}(y | \theta') q(\theta | \theta')}{p(\theta) \hat{p}(y | \theta) q(\theta' | \theta)} \right\}
 \]
Pseudo-Marginal MCMC

Example: when is target not computable?

- **Gaussian process classification**, latent process f

$$p(\theta|y) \propto p(\theta)p(y|\theta) = p(\theta) \int p(f|\theta)p(y|f, \theta)df =: \pi(\theta)$$

... but cannot integrate out f

- Estimated MH ratio:

$$\alpha(\theta, \theta') = \min \left\{ 1, \frac{p(\theta')\hat{p}(y|\theta')q(\theta'|\theta)}{p(\theta)\hat{p}(y|\theta)q(\theta'|\theta)} \right\}$$

- Replacing marginal likelihood $p(y|\theta)$ with **unbiased estimate** $\hat{p}(y|\theta)$ still results in **correct invariant distribution** [Beaumont, 2003; Andrieu & Roberts, 2009]
Intractable & Non-linear Target in GPC

- Sliced posterior over hyperparameters of a Gaussian Process classifier on UCI Glass dataset obtained using Pseudo-Marginal MCMC

Adaptive sampler that learns the shape of non-linear targets without gradient information?
Two strategies for adaptive sampling

Kameleon (Sejdinovic et al. 2014)
- Learns covariance in RKHS.
- Locally aligns to (non-linear) target covariance, gradient free.

Kernel Adaptive Hamiltonian Monte Carlo (Strathmann et al. 2015)
- Learns global estimate of gradient of log target density
The Kameleon

D. Sejdinovic, H. Strathmann, M. Lomeli, C. Andrieu, and A. Gretton, ICML 2014
Use feature space covariance

- Capture non-linearities using linear covariance C_z in feature space \mathcal{H}
Use feature space covariance

- Capture non-linearities using linear covariance C_z in feature space \mathcal{H}
Capture non-linearities using linear covariance C_z in feature space \mathcal{H}

Find a nearby pre-image in \mathcal{X}
(gradient descent)
Use feature space covariance

- Capture non-linearities using linear covariance C_z in feature space \mathcal{H}

Input space \mathcal{X}

Feature space \mathcal{H}

Feature space sample f

Find a nearby pre-image in \mathcal{X} (gradient descent)
Proposal Construction Summary

1. Get a chain subsample $z = \{z_i\}_{i=1}^n$
2. Construct an RKHS sample $f \sim \mathcal{N}(\phi(x_t), \nu^2 C_z)$
3. Propose x^* such that $\phi(x^*)$ is close to f (with an additional exploration term $\xi \sim \mathcal{N}(0, \gamma^2 I_d)$).
Proposal Construction Summary

1. Get a chain subsample $z = \{z_i\}_{i=1}^n$
2. Construct an RKHS sample $f \sim \mathcal{N}(\phi(x_t), \nu^2 C_z)$
3. Propose x^* such that $\phi(x^*)$ is close to f (with an additional exploration term $\xi \sim \mathcal{N}(0, \gamma^2 I_d)$).

Integrate out RKHS samples f, gradient step, and ξ to obtain marginal Gaussian proposal on the input space:

$$q_z(x^* | x_t) = \mathcal{N}(x_t, \gamma^2 I_d + \nu^2 M_{z,x_t} H M_{z,x_t}^\top)$$

$$M_{z,x_t} = 2 [\nabla_x k(x, z_1)|_{x=x_t}, \ldots, \nabla_x k(x, z_n)|_{x=x_t}],$$

$$k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}.$$
Examples of Covariance Structure for Standard Kernels

Kameleon proposals capture local covariance structure

Gaussian kernel: \[k(x, x') = \exp\left(-\frac{1}{2} \sigma^{-2} \|x - x'\|_2^2\right) \]

\[
[\text{cov}[q_{z(.|y)}]]_{ij} = \gamma^2 \delta_{ij} + \frac{4\nu^2}{\sigma^4} \sum_{a=1}^{n} [k(y, z_a)]^2 (z_{a,i} - y_i)(z_{a,j} - y_j) + O\left(\frac{1}{n}\right).
\]
Kernel Adaptive Hamiltonian Monte Carlo (KMC)

Heiko Strathmann, Dino Sejdinovic, Samuel Livingstone, Zoltan Szabo, and Arthur Gretton, NIPS 2015
Hamiltonian Monte Carlo

- HMC: distant moves, high acceptance probability.
- Potential energy \(U(q) = -\log \pi(q) \), auxiliary momentum \(p \sim \exp(-K(p)) \), simulate for \(t \in \mathbb{R} \) along Hamiltonian flow of \(H(p, q) = K(p) + U(q) \), using operator

\[
\frac{\partial K}{\partial p} \frac{\partial}{\partial q} - \frac{\partial U}{\partial q} \frac{\partial}{\partial p}
\]

- Numerical simulation (i.e. leapfrog) depends on gradient information.

What if gradient unavailable, e.g. in Bayesian GP classification?
Infinite dimensional exponential families

Proposal is RKHS exponential family model [Fukumizu, 2009; Sriperumbudur et al. 2014], but accept using true Hamiltonian (to correct for both model and leapfrog)

$$\text{const} \times \pi(x) \approx \exp(\langle f, k(x, \cdot) \rangle_\mathcal{H} - A(f))$$

- Sufficient statistics: feature map $k(\cdot, x) \in \mathcal{H}$, satisfies $f(x) = \langle f, k(x, \cdot) \rangle_\mathcal{H}$ for any $f \in \mathcal{H}$.
- Natural parameters: $f \in \mathcal{H}$.

The model is

- dense in continuous densities on compact domains (TV, KL, etc.),
- relatively robust to increasing dimensions, as opposed to e.g. KDE.

How to learn f from samples without access to $A(f)$?
Score matching

- Estimation of unnormalised density models from samples [Sriperumbudur et al. 2014]
- Minimises Fisher divergence

\[J(f) = \frac{1}{2} \int \pi(x) \| \nabla f(x) - \nabla \log \pi(x) \|_2^2 \, dx \]

- Possible without accessing \(\nabla \log \pi(x) \) and accessing \(\pi(x) \) only through samples \(x := \{x_i\}_{i=1}^t \)

\[\hat{J}(f) = \hat{E}_x \left\{ \sum_{\ell=1}^d \left[\frac{\partial^2 f(x)}{\partial x_\ell^2} + \frac{1}{2} \left(\frac{\partial f(x)}{\partial x_\ell} \right)^2 \right] \right\} \]

Expensive: full solution requires solving \((td + 1)\)-dimensional linear system.
Approximate solution: KMC finite

\[f(x) = \theta^\top \phi_x \]

- **Random Fourier Features**
 \[\phi_x^\top \phi_y \approx k(x, y) \]

- \(\theta \in \mathbb{R}^m \) can be computed from
 \[\hat{\theta}_\lambda := (C + \lambda I)^{-1} b \]

 \[
 b := -\frac{1}{t} \sum_{i=1}^{t} \sum_{\ell=1}^{d} \hat{\phi}_{x_i}^{\ell} \\
 C := \frac{1}{t} \sum_{i=1}^{t} \sum_{\ell=1}^{d} \hat{\phi}_{x_i}^{\ell} \left(\phi_{x_i}^{\ell} \right)^\top
 \]

 where \(\hat{\phi}_{x}^{\ell} := \frac{\partial}{\partial x_{\ell}} \phi_{x} \) and \(\phi_{x}^{\ell} := \frac{\partial^2}{\partial x_{\ell}^2} \phi_{x} \).

- **On-line updates** cost \(O(dm^2) \).

Updates fast, uses *all* Markov chain history. Caveat: need to initialise correctly.

Gradient norm: Gaussian

KMC Finite
Approximate solution: KMC lite

\[f(x) = \sum_{i=1}^{n} \alpha_i k(z_i, x) \]

- \(z \subseteq x \) sub-sample.
- \(\alpha \) from linear system

\[\hat{\alpha}_\lambda = -\frac{\sigma}{2} (C + \lambda I)^{-1} b \]

where \(C \in \mathbb{R}^{n \times n} \), \(b \in \mathbb{R}^n \) depend on kernel matrix

- Cost \(O(n^3 + n^2 d) \) (or cheaper with low-rank approx., conjugate gradient).

Geometrically ergodic on log-concave targets (fast convergence).

Gradient norm: Gaussian

KMC Lite
Does kernel HMC work in high dimensions?

Challenging Gaussian target (**top**):
- Eigenvalues: $\lambda_i \sim \text{Exp}(1)$.
- Covariance: $\text{diag}(\lambda_1, \ldots, \lambda_d)$, randomly rotate.
- Use Rational Quadratic kernel to account for resulting highly ‘non-singular’ length-scales.
- KMC scales up to $d \approx 30$.

An easy, isotropic Gaussian target (**bottom**):
- More smoothness allows KMC to scale up to $d \approx 100$.
Synthetic targets: Banana

Banana: $B(b, \nu)$: take $X \sim \mathcal{N}(0, \Sigma)$ with $\Sigma = \text{diag}(\nu, 1, \ldots, 1)$, and set $Y_2 = X_2 + b(X_1^2 - \nu)$, and $Y_i = X_i$ for $i \neq 2$. (Haario et al, 1999; 2001)
Synthetic targets: Banana

Acc. rate

Minimum ESS

KMC behaves like HMC as number n of oracle samples increases.
Gaussian Process Classification on UCI data

- Standard GPC model

\[p(f, y, \theta) = p(\theta)p(f|\theta)p(y|f) \]

where \(p(f|\theta) \) is a GP and with a sigmoidal likelihood \(p(y|f) \).

- Goal: sample from \(p(\theta|y) \propto p(\theta)p(y|\theta) \).

- Unbiased estimate of \(\hat{p}(y|\theta) \) via importance sampling.

- No access to likelihood or gradient.
Gaussian Process Classification on UCI data

- Standard GPC model

\[p(f, y, \theta) = p(\theta)p(f|\theta)p(y|f) \]

where \(p(f|\theta) \) is a GP and with a sigmoidal likelihood \(p(y|f) \).

- Goal: sample from

\[p(\theta|y) \propto p(\theta)p(y|\theta). \]

- Unbiased estimate of \(\hat{p}(y|\theta) \) via importance sampling.

- No access to likelihood or gradient.

Significant mixing improvements over state-of-the-art.
Conclusions

- Simple, versatile, gradient-free adaptive MCMC samplers:
 - Kameleon:
 - Uses local covariance structure of the target distribution at the current chain state
 - Kernel HMC
 - Derivative of log density fit to samples, use this as proposal in HMC.
- Outperforms existing adaptive approaches on nonlinear target distributions
- Future work: For Kameleon, does feature space covariance track high density regions in original space? For kernel HMC, how does convergence rate degrade with increasing dimension?

- **Kameleon code**: https://github.com/karlnapf/kameleon-mcmc
- **Kernel HMC code**: https://github.com/karlnapf/kernel_hmc
Bayesian Gaussian Process Classification

- GPC model: latent process f, labels y, (with covariate matrix X), and hyperparameters θ:

 $$p(f, y, \theta) = p(\theta)p(f|\theta)p(y|f)$$

 where $f|\theta \sim \mathcal{N}(0, K_\theta)$ is a realization of a GP with covariance K_θ (covariance between latent processes evaluated at X).
Bayesian Gaussian Process Classification

- **GPC model**: latent process f, labels y, (with covariate matrix X), and hyperparameters θ:

 $$ p(f, y, \theta) = p(\theta) p(f|\theta) p(y|f) $$

 where $f|\theta \sim \mathcal{N}(0, K_\theta)$ is a realization of a GP with covariance K_θ (covariance between latent processes evaluated at X).

- K_θ: exponentiated quadratic Automatic Relevance Determination (ARD) covariance:

 $$ (K_\theta)_{ij} = \kappa(x_i, x_j'|\theta) = \exp \left(-\frac{1}{2} \sum_{s=1}^{d} \frac{(x_{i,s} - x_{j,s}')^2}{\exp(\theta_s)} \right) $$
Bayesian Gaussian Process Classification (2)

- Fully Bayesian treatment: Interested in the posterior $p(\theta|y)$
Bayesian Gaussian Process Classification (2)

- Fully Bayesian treatment: Interested in the posterior $p(\theta|y)$
- Cannot use a Gibbs sampler on $p(\theta, f|y)$, which samples from $p(f|\theta, y)$ and $p(\theta|f, y)$ in turns, since $p(\theta|f, y)$ is extremely sharp
Bayesian Gaussian Process Classification (2)

- Fully Bayesian treatment: Interested in the posterior $p(\theta|y)$
- Cannot use a Gibbs sampler on $p(\theta, f|y)$, which samples from $p(f|\theta, y)$ and $p(\theta|f, y)$ in turns, since $p(\theta|f, y)$ is extremely sharp
- Filippone & Girolami, 2013 use Pseudo-Marginal MCMC to sample $p(\theta|y) = p(\theta) \int p(\theta, f|y)p(f|\theta)df$.

Unbiased estimate of $\hat{p}(y|\theta)$ via importance sampling:

$\hat{p}(\theta|y) \propto p(\theta)p(y|\theta) \approx p(\theta)\frac{1}{n_{imp}}\sum_{i=1}^{n_{imp}} p(y|f(i))p(f(i)|\theta)Q(f(i))$
Bayesian Gaussian Process Classification (2)

- Fully Bayesian treatment: Interested in the posterior $p(\theta|y)$
- Cannot use a Gibbs sampler on $p(\theta, f|y)$, which samples from $p(f|\theta, y)$ and $p(\theta|f, y)$ in turns, since $p(\theta|f, y)$ is extremely sharp
- **Filippone & Girolami, 2013** use Pseudo-Marginal MCMC to sample $p(\theta|y) = p(\theta) \int p(\theta, f|y)p(f|\theta)df$.
- Unbiased estimate of $\hat{p}(y|\theta)$ via importance sampling:

 $$\hat{p}(\theta|y) \propto p(\theta)\hat{p}(y|\theta) \approx p(\theta) \frac{1}{n_{imp}} \sum_{i=1}^{n_{imp}} p(y|f(i)) \frac{p(f(i)|\theta)}{Q(f(i))}$$
Fully Bayesian treatment: Interested in the posterior $p(\theta|y)$

Cannot use a Gibbs sampler on $p(\theta, f|y)$, which samples from $p(f|\theta, y)$ and $p(\theta|f, y)$ in turns, since $p(\theta|f, y)$ is extremely sharp

Filippone & Girolami, 2013 use Pseudo-Marginal MCMC to sample $p(\theta|y) = p(\theta) \int p(\theta, f|y)p(f|\theta)df$.

Unbiased estimate of $\hat{p}(y|\theta)$ via importance sampling:

$\hat{p}(\theta|y) \propto p(\theta)p(\theta|y) \approx p(\theta)\frac{1}{n_{\text{imp}}} \sum_{i=1}^{n_{\text{imp}}} p(y|f^{(i)}) \frac{p(f^{(i)}|\theta)}{Q(f^{(i)})}$

No access to likelihood, gradient, or Hessian of the target.
RKHS and Kernel Embedding

- For any positive semidefinite function k, there is a unique RKHS \mathcal{H}_k. Can consider $x \mapsto k(\cdot, x)$ as a feature map.

- Definition (Kernel embedding)
 Let k be a kernel on X, and P a probability measure on X. The kernel embedding of P into the RKHS \mathcal{H}_k is $\mu_k(P) \in \mathcal{H}_k$ such that $E_{P} f(X) = \langle f, \mu_k(P) \rangle_{\mathcal{H}_k}$ for all $f \in \mathcal{H}_k$.

Alternatively, can be defined by the Bochner integral $\mu_k(P) = \int k(\cdot, x) dP(x)$ (expected canonical feature).

For many kernels k, including the Gaussian, Laplacian and inverse multi-quadratics, the kernel embedding $P \mapsto \mu_P$ is injective: characteristic (Sriperumbudur et al, 2010), captures all moments (similarly to the characteristic function).
RKHS and Kernel Embedding

- For any positive semidefinite function k, there is a unique RKHS \mathcal{H}_k. Can consider $x \mapsto k(\cdot, x)$ as a feature map.

Definition (Kernel embedding)

Let k be a kernel on \mathcal{X}, and P a probability measure on \mathcal{X}. The kernel embedding of P into the RKHS \mathcal{H}_k is $\mu_k(P) \in \mathcal{H}_k$ such that $\mathbb{E}_P f(X) = \langle f, \mu_k(P) \rangle_{\mathcal{H}_k}$ for all $f \in \mathcal{H}_k$.

- Alternatively, can be defined by the Bochner integral $\mu_k(P) = \int k(\cdot, x) \, dP(x)$ (expected canonical feature).

- For many kernels k, including the Gaussian, Laplacian and inverse multi-quadratics, the kernel embedding $P \mapsto \mu_P$ is injective: characteristic (Sriperumbudur et al, 2010), captures all moments (similarly to the characteristic function).
Covariance operator

Definition

The covariance operator of P is $C_P : \mathcal{H}_k \rightarrow \mathcal{H}_k$ such that $\forall f, g \in \mathcal{H}_k$,
$$\langle f, C_P g \rangle_{\mathcal{H}_k} = \text{Cov}_P [f(X)g(X)].$$
Covariance operator

Definition

The covariance operator of P is $C_P : \mathcal{H}_k \rightarrow \mathcal{H}_k$ such that $\forall f, g \in \mathcal{H}_k$, $\langle f, C_P g \rangle_{\mathcal{H}_k} = \text{Cov}_P [f(X)g(X)]$.

- **Covariance operator**: $C_P : \mathcal{H}_k \rightarrow \mathcal{H}_k$ is given by
 \[
 C_P = \int k(\cdot, x) \otimes k(\cdot, x) \, dP(x) - \mu_P \otimes \mu_P \text{ (covariance of canonical features)}
 \]

- **Empirical versions of embedding and the covariance operator**:
 \[
 \begin{align*}
 \mu_z &= \frac{1}{n} \sum_{i=1}^{n} k(\cdot, z_i) \\
 C_z &= \frac{1}{n} \sum_{i=1}^{n} k(\cdot, z_i) \otimes k(\cdot, z_i) - \mu_z \otimes \mu_z
 \end{align*}
 \]

The empirical covariance captures **non-linear** features of the underlying distribution, e.g. Kernel PCA.
Kernel distance gradient

\[g(x) = k(x, x) - 2k(x, y) - 2 \sum_{i=1}^{n} \beta_i [k(x, z_i) - \mu_z(x)] \]

\[\nabla_x g(x)|_{x=y} = \nabla_x k(x, x)|_{x=y} - 2\nabla_x k(x, y)|_{x=y} - M_{z,y}H\beta \]

where \(M_{z,y} = 2 [\nabla_x k(x, z_1)|_{x=y}, \ldots, \nabla_x k(x, z_n)|_{x=y}] \) and \(H = I_n - \frac{1}{n}1_{n \times n} \)
Cost function g

g varies most along the high density regions of the target
Synthetic targets: Flower

Flower: $\mathcal{F}(r_0, A, \omega, \sigma)$, a d-dimensional target with:

$$
\mathcal{F}(x; r_0, A, \omega, \sigma) \propto \exp \left(- \frac{\sqrt{x_1^2 + x_2^2} - r_0 - A \cos (\omega \text{atan2} (x_2, x_1))}{2\sigma^2} \right)
\times \prod_{j=3}^{d} \mathcal{N}(x_j; 0, 1).
$$

Concentrates on r_0-circle with a periodic perturbation (with amplitude A and frequency ω) in the first two dimensions.
Synthetic targets: convergence statistics

8-dimensional $\mathcal{F}(10, 6, 6, 1)$ target;
iterations: 120000, burn-in: 60000