Playing Russian Roulette with Large-Scale GMRF
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A Large-Scale Dataset: Total Column Ozone Data Suggested Approach: High-Level |

Russian Roulette

1. Compute a Monte-Carlo estimate of log(det(Q)) as in [2] and plug it into £(0) = log(7(y|~, 7)) (0 300
. /
2. Use Russian Roulette [3] to get an unbiased estimator of exp (£(8)), i.e., 7(y|0) 1. Reduce absolute value. Find bound i such that i/ < X'/ < 0 and
50 3. Use the Pseudo-Marginal-MCMC scheme [1] to sample from 7(0|y), i.e., use the Metropolis Hastings perform RR on
60 acceptance probability exp(L(0)) = exp(U)exp(L(O) — U),
- T(y|0"Y) x w(O™) X q(9°|d|9new) whose interesting parts are now closer to 0, i.e., need less RR itera-
40 min { 1, — old old new|pold tions to reach.
(y|0°F) x w(6°F) x q(6""|6°)
for some proposal q. — Exact-A imate Bavesian inf : iblel
20 HACTTPPIOHITIATE BayERIa THETENCE B POssinie 2. Scale estimates. Find a positive integer E =~ |£(0) —U| and rescale
" Russian Roulette for the Exponential Function | £(0) — U E
- o exp((6) ~ ) = (o0 (0=
o —
® Have: unbiased estimator £(6). Want: unbiased estimator for 7w(y|0) = exp(L(6)). B
—20 ) (v16) (£ Now need E RR estimates of exp (E(Hg- u) ~ exp(—1), which is
1. Infinite series representation of exponential nuch better behaved
0 < L r(6) <. £(6) £O) L(6)L(O) L(6)L(0)L(6) | - | Pt e e
| exp(L£(0)) = 1 + Z H — =1+ Z = 1+ —+ — + ... 3. Average independent samples X () to reduce variance. For the prac-
—60 | i=1 j=1 J —1 - - 6 titioner, there is a faster alternative with controllable bias.
_ _ _ _ _ : — _ 4. Given estimates { X N , select group size d < N and create N
| 2. Unbiased . Repl £(6) by independ biased XU) ~ £(6) for i = 1,2 =1 300
_ 80 k B J , | . . Unbiased estimate: Replace every £(0) by independent unbiased estimate ~ L(0) fori=1,2,... i ssim e e o i ndezs ) e L -Gl Gemersie o
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Longitude exp(L(0)) =1+ Z H — =1+ Z ;. o1 | ) 200
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» Popular dataset. We follow modelling approach in [2]. o o _ | _ | . d T 100/
L _ . . 3. Truncate the infinite sum ) = «j unbiasedly via a set of decreasing stopping probabilities S+
» Large-Scale: n=173,405 orbiting satellite measurements. . ! e : : : : 501
_ _ _ ) _ _ _ » Define threshold r and evaluate «; until finding j such that |o;| < r which have lower variance. Introduced dependence is effectively
» Example model. _Statlonary m(_)del usmg.approxmaté Mateérn SPDE on a flx_ed t”an_gU|atlon of the globe. » With some diminishing probability, for example g; := ’O%ﬂ < 1, continue evaluating with weight qu broken by permuting over different RR denominators Hgil n —= 0
> Note: full analysis would require modelling observation process and uncertainty of field. » Truncated terms, on decision not to continue, is the desired unbiased estimator 1-2-6-24-... and bias can be controlled!

Our Example: The Common Latent Gaussian Model Estimating Log-Determinants — Rational Approximations and Krylov-Methods | Approaching Feasibility: Distributed Russian Roulette

_ _ _ Approach suggested in (2], .based On Sparse matrlx—vector products. » Approximating sI-T log(Q)s; corresponds to solving N /= 20 to 30 linear systems.
T ~ logy N(0, 100) Challenging dimensions — though sparse: 1. Compute Monte Carlo estimates of log-determinants as . . N T ..
» Each estimate in > ;_;s. log(Q)s; is independent. M ~ 20 to 50.
i ~ logy N(0,100) > = 173,405 m = 196,002 1 Averaging multiple estimates of £(8), which are independent. Needed ~ 50
N 1 » A € R"™M _ piecewise linear basis log(det(Q)) = tr(log(Q)) = E (sT 0g(Q)s) ~ ~ <Tlo (Q)s, » Averaging multiple estimates of £(8), which are independent. Needed ~
x|k ~ N(0,Q(r) ) g g s g N i 10g(Q)s;, . . . .
’ 1 mX m . . : » Given appropriate hardware, potential speed-up of factor ~ 75000. Exploit cluster computers.
x, 7 ~ N(Ax, 7 11) »Q(k) " eR — precision matrix SPDE i=1
yix, X, T : - : : : Synchronise Synchronise
y x € R™ _ |atent field » k controls range of correlation where the source-vectors s; are random realisations with zero mean and unit variance, e.g., s; ~ N (0, 1).
y € R" — observations » T observation noise 2. Need log(Q)s. Use rational approximation of complex Cauchy contour integral (up to machine precision!). MCMC Prepare Subtasks Prepare Collection Join Results/MCMC Step
. H —> —> >
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Goal: Exact-Approximate Bayesian Inference for Parameters log(Q)s ~ S Z@i(Q —oil) s, Idle Solve linear system dle
=1 Worker I} > > 3
We are interested in the posterior over the parameters
P P where o, o € CM are complex integration weights and shifts. Error bound for resolution M and accuracy e€: o Solve dle
' t
m(k, Ty) o< w(y|k, 7)7(K)m(T), M x log (imax((g))) log(€). Use Krylov-subspace methods to solve for (Q — 0,-/)_15. Worker i © > e TR eﬂ R
where the log-marginal-likelihood 7(y|%, 7) can be shown to be (using 6 := {x, 7}), 3. Use graph-colourings to exploit sparsity structure of Q when generating source vectors s;. , :
£(0) = log(r(y|r, 7)) = log(det(Q(r))) + nlog(r) — log(det(Q(x) + AT A)) 6> .o = m =
T 2., T Ta\—1aT — Normal —— Coloured- - - True i :
Ty 'y + 7y A(Q(k)+T7ATA) ATy + C. 20+ 1430 B N N
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Infeasible Cholesky — Infeasible Log-Determinants — Infeasible Exact Inference? " 1425 v \
Standard met.hod for computing log-determinant of psd. ma7:crix Q: 51 1420 |
1. Compute triangular Cholesky factor L, such that Q = LL 0 agsl o
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2. Compute log(det(Q)) = |og(det(LLT)) = log((] ], Lii)(Hj Lj')) =2) ;log(Li) Histogram Convergence ’ T U [1] Christophe Andrieu and Gareth O. Roberts.
Does this work for Sparse matrices? 113 S ‘ The pseudo-marginal approach for efficient

Monte Carlo computations.
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A Sparse Symmetric Matrix Cholesky Factor
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150 150 > Ifseudo Ma.rglnal MCI\/IC. s very sensible to variance in al _ Traces and kernel density estimate for @ = {, 7} arame edr.es {na.lon in high dimensiona
T T T ol 7T(y|9), which affects mixing. gaussian distributions.
. . ., . . 5 Statistics and Computing, December 2012.
) e e 250 | = » Exponential function’s interesting places are at index e . _ _ _ _
0| ~ 0 of same order as argument (see plot) S [3] Mark Girolami, Anne-Marie Lyne, Heiko
- _ _ _ _ e 0 ol |'|'.' Strathmann, Daniel Simpson, and Yves
%0 | ~ 50 | » Need many Russian Roulette iterations, otherwise o — Atchade
» . . . — -

400 | v 400 | variance is catastrophic. —2t O Playing russian roulette with intractable
40| HEH as0| r— likelihoods.
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Non-zeros: 3.29 percent Non-zeros: 13.23 percent Extremely challenging to obtain good mixing!
—6
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Problem: Fill-in effect limits dimensionality due to finite memory. Intractable Likelihood! Index i .
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