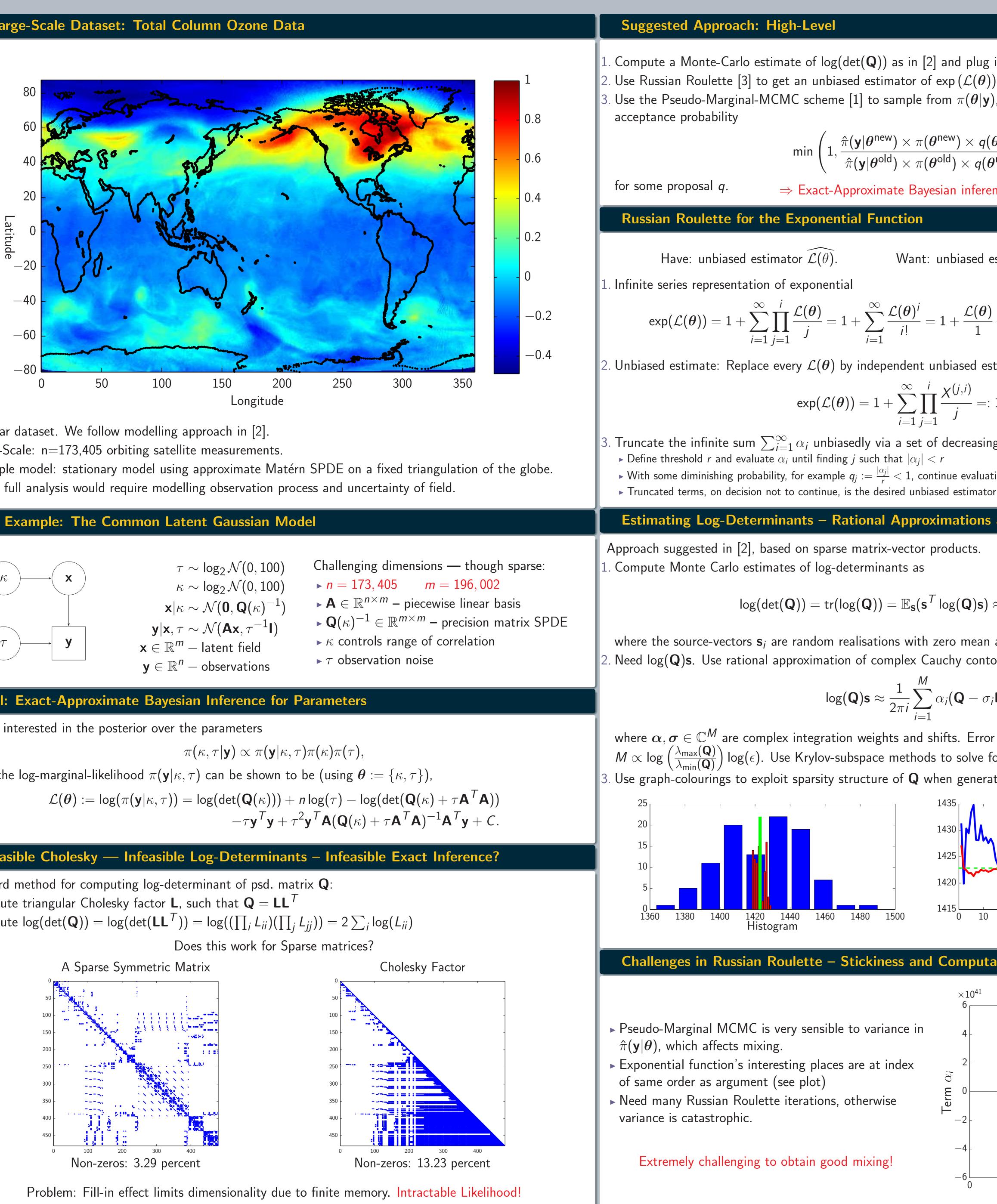
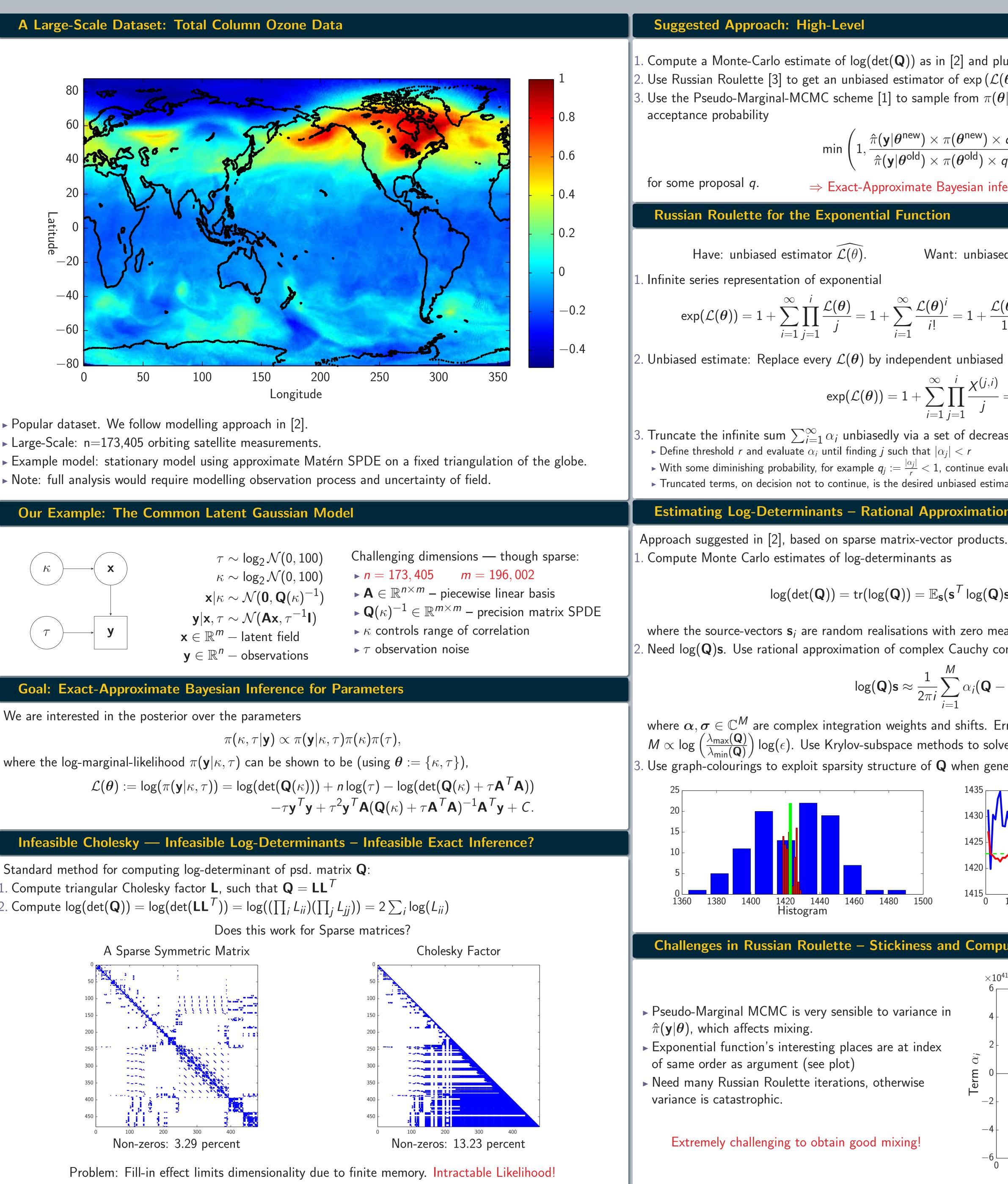
Playing Russian Roulette with Large-Scale GMRF

Heiko Strathmann^{1,2}, Daniel Simpson³, and Mark Girolami¹ Department of Statistical Science¹ & Gatsby Computational Neuroscience Unit², University College London. Norwegian University of Science and Technology³



- ▶ Popular dataset. We follow modelling approach in [2].
- ► Large-Scale: n=173,405 orbiting satellite measurements.
- ► Note: full analysis would require modelling observation process and uncertainty of field.



We are interested in the posterior over the parameters

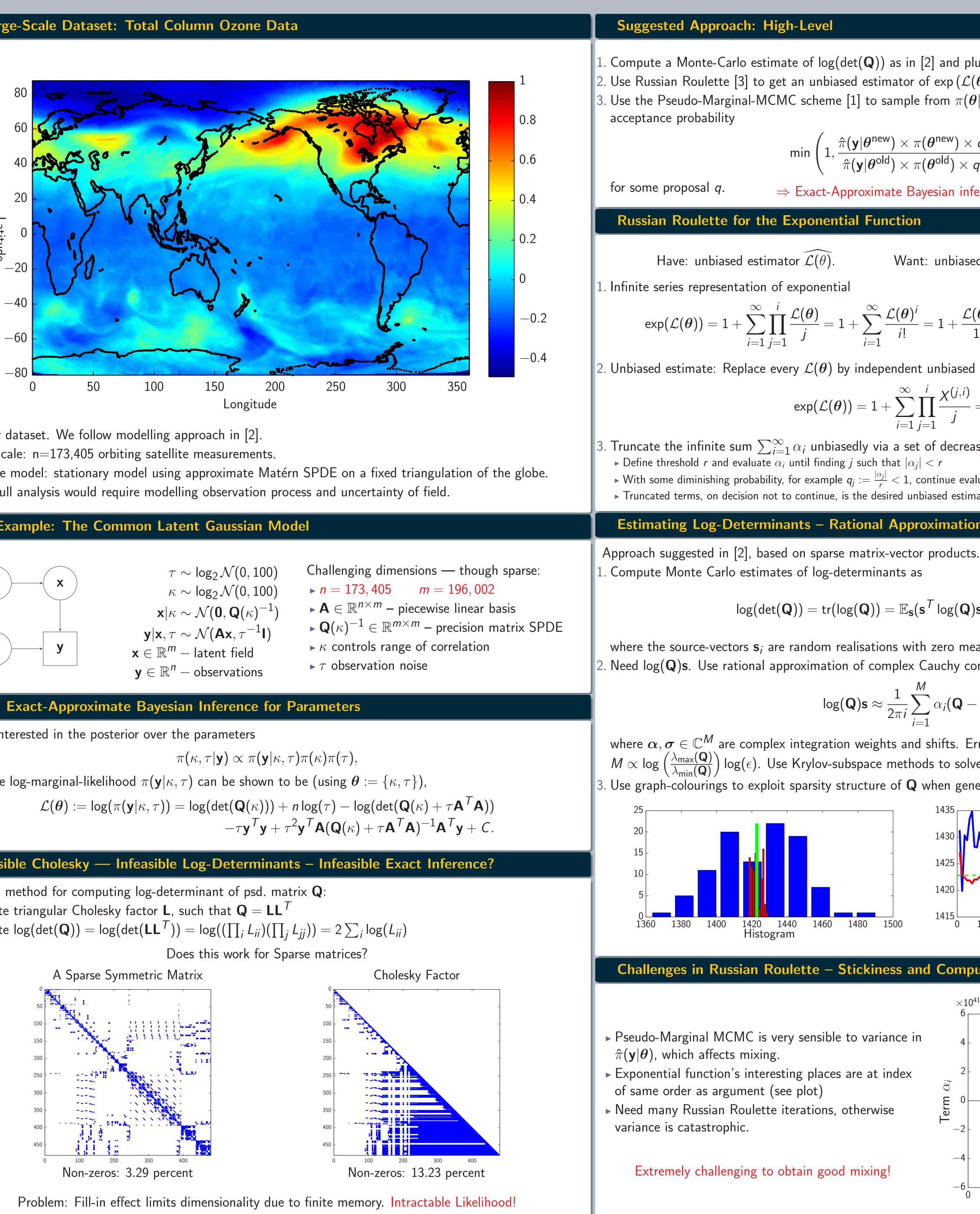
$$\pi(\kappa, au | \mathbf{y}) \propto \pi(\mathbf{y} | \kappa, au) \pi(\kappa) \pi(au),$$

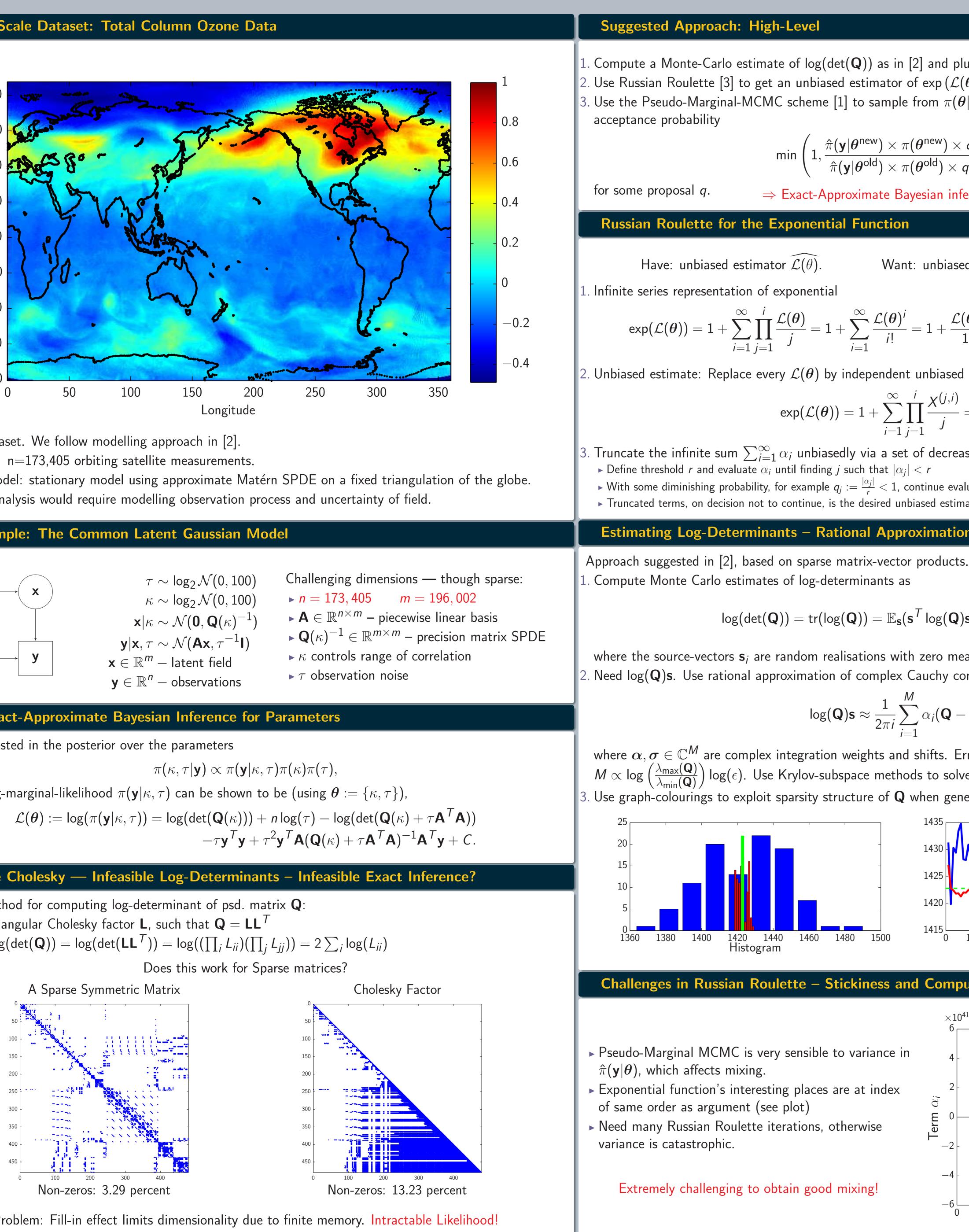
where the log-marginal-likelihood
$$\pi(\mathbf{y}|\kappa,\tau)$$
 can be shown to be (using $\boldsymbol{\theta} := \{\kappa,\tau\}$),
 $\mathcal{L}(\boldsymbol{\theta}) := \log(\pi(\mathbf{y}|\kappa,\tau)) = \log(\det(\mathbf{Q}(\kappa))) + n\log(\tau) - \log(\det(\mathbf{Q}(\kappa) + \tau))$

$$- au$$
y'y $+ au^2$ y'A(Q(κ) $+ au$ A'A) $^{-1}$ A'y

Standard method for computing log-determinant of psd. matrix **Q**:

$$Lompute \log(\det(\mathbf{Q})) = \log(\det(\mathbf{LL}')) = \log((\prod_i L_{ii})(\prod_j L_{jj})) = 2\sum_i \log(L_{ii})$$





	Approaching Feasibility: Reducing the Number
ug it into $\mathcal{L}(\boldsymbol{\theta}) = \log(\pi(\mathbf{y} \kappa, \tau))$ $(\boldsymbol{\theta})$), i.e., $\hat{\pi}(\mathbf{y} \boldsymbol{\theta})$ (\mathbf{y}) , i.e., use the Metropolis Hastings $\frac{q(\boldsymbol{\theta}^{\text{old}} \boldsymbol{\theta}^{\text{new}})}{q(\boldsymbol{\theta}^{\text{new}} \boldsymbol{\theta}^{\text{old}})}$	1. Reduce absolute value. Find bound \mathcal{U} such that $\mathcal{U} < \text{perform RR on}$ $\exp(\mathcal{L}(\theta)) = \exp(\mathcal{U})\exp(\mathcal{L}(\theta) - \mathcal{U}),$ whose interesting parts are now closer to 0, i.e., need tions to reach.
d estimator for $\pi(\mathbf{y} \boldsymbol{\theta}) = \exp(\mathcal{L}(\boldsymbol{\theta})).$ $\frac{\theta}{L} + \frac{\mathcal{L}(\boldsymbol{\theta})\mathcal{L}(\boldsymbol{\theta})}{2} + \frac{\mathcal{L}(\boldsymbol{\theta})\mathcal{L}(\boldsymbol{\theta})\mathcal{L}(\boldsymbol{\theta})}{6} + \dots$ estimate $X^{(i)} \sim \widehat{\mathcal{L}(\boldsymbol{\theta})}$ for $i = 1, 2, \dots$ =: $1 + \sum_{i=1}^{\infty} \alpha_i.$ sing stopping probabilities luating with weight $\frac{1}{q_i}$	 2. Scale estimates. Find a positive integer E ≈ L(θ) - U exp(L(θ) - U) = (exp(L(θ) - U)/E))^E Now need E RR estimates of exp(L(θ)-U/E) ≈ exp(- much better behaved. 3. Average independent samples X⁽ⁱ⁾ to reduce variance. titioner, there is a faster alternative with controllable I 4. Given estimates {X⁽ⁱ⁾}_{i=1}, select group size d < N index sets I_i that contain d unique indices j ∈ {1,, Ñ pseudo-independent estimates X⁽ⁱ⁾ = 1/d ∑_{j∈I_i} X^(j) (1 ≤ i ≤ Ñ), which have lower variance. Introduced dependence broken by permuting over different RR denominato 1 ⋅ 2 ⋅ 6 ⋅ 24 ⋅ and bias can be controlled!
ns and Krylov-Methods $\mathbf{s}) \approx \frac{1}{N} \sum_{i=1}^{N} \mathbf{s}_{i}^{T} \log(\mathbf{Q}) \mathbf{s}_{i},$ an and unit variance, e.g., $\mathbf{s}_{i} \sim \mathcal{N}(0, \mathbf{I}).$ intour integral (up to machine precision!). $\sigma_{i}\mathbf{I})^{-1}\mathbf{s},$ for bound for resolution M and accuracy ϵ : e for $(\mathbf{Q} - \sigma_{i}I)^{-1}\mathbf{s}.$ erating source vectors \mathbf{s}_{i} .	Approaching Feasibility: Distributed Russian • Approximating $\mathbf{s}_i^T \log(\mathbf{Q})\mathbf{s}_i$ corresponds to solving $N \neq \mathbf{s}_i$ • Each estimate in $\sum_{i=1}^N \mathbf{s}_i^T \log(\mathbf{Q})\mathbf{s}_i$ is independent. N • Averaging multiple estimates of $\mathcal{L}(\theta)$, which are independent. Synchronise • Given appropriate hardware, potential speed-up of factory • MCMC • Main-Node • Prepare Subtasks • Vorker • Idle • • • • • • • • • • • • • • • • • • •
utation Time 1 Exponential Series - $exp(-100)$ 10 10 100	Results – Current State – Work in Progress $\int_{0}^{0} \int_{0}^{0} $

e Number of Estimates for Russian Roulette

h that $\mathcal{U} < X^{(i)} < 0$ and

 $(\boldsymbol{ heta}) - \mathcal{U}),$), i.e., need less RR itera-

 $pprox |\mathcal{L}(oldsymbol{ heta})\!-\!\mathcal{U}|$ and rescale $\left(\frac{\partial}{\partial}\right) - \mathcal{U}$ $\left(rac{\mathcal{U}}{\mathcal{T}}
ight) pprox \mathsf{exp}(-1)$, which is

ce variance. For the praccontrollable bias. size d < N and create \tilde{N}

 $j \in \{1, \ldots, N\}$. Generate

$$\leq i \leq \tilde{N}$$
),

dependence is effectively denominators $\prod_{n=1}^{\infty} n =$

Russian Roulette

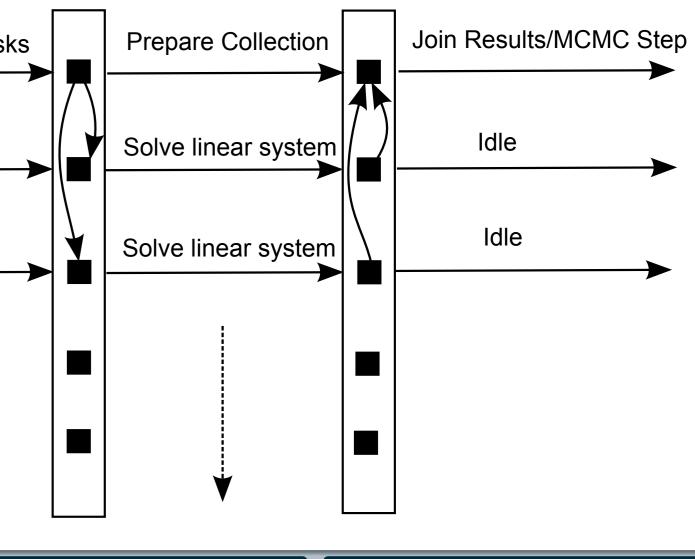
solving $N \approx 20$ to 30 linear systems.

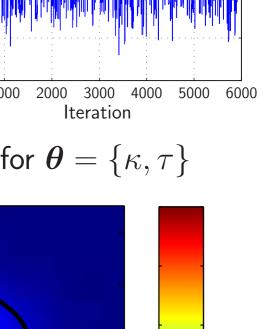
ependent. $M \approx 20$ to 50.

ch are independent. Needed ~ 50

ed-up of factor \sim 75000. Exploit cluster computers.

Synchronise Synchronise





Literature

- [1] Christophe Andrieu and Gareth O. Roberts. The pseudo-marginal approach for efficient Monte Carlo computations. Annals of Statistics, 37(2):697–725, April 2009.
- [2] Erlend Aune, DanielP. Simpson, and Jo Eidsvik. Parameter estimation in high dimensional gaussian distributions. Statistics and Computing, December 2012.
- [3] Mark Girolami, Anne-Marie Lyne, Heiko Strathmann, Daniel Simpson, and Yves Atchade. Playing russian roulette with intractable
- likelihoods.

Technical Report arXiv:1306.4032, June 2013.

