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A Large-Scale Dataset: Total Column Ozone Data
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◮ Popular dataset. We follow modelling approach in [2].

◮ Large-Scale: n=173,405 orbiting satellite measurements.

◮ Example model: stationary model using approximate Matérn SPDE on a fixed triangulation of the globe.

◮ Note: full analysis would require modelling observation process and uncertainty of field.

Our Example: The Common Latent Gaussian Model

xκ

τ y

τ ∼ log2N (0, 100)

κ ∼ log2N (0, 100)

x|κ ∼ N (0,Q(κ)−1)

y|x, τ ∼ N (Ax, τ−1I)

x ∈ Rm − latent field

y ∈ Rn − observations

Challenging dimensions — though sparse:

◮ n = 173, 405 m = 196, 002

◮ A ∈ Rn×m – piecewise linear basis

◮ Q(κ)−1 ∈ Rm×m – precision matrix SPDE

◮ κ controls range of correlation

◮ τ observation noise

Goal: Exact-Approximate Bayesian Inference for Parameters

We are interested in the posterior over the parameters

π(κ, τ |y) ∝ π(y|κ, τ )π(κ)π(τ ),

where the log-marginal-likelihood π(y|κ, τ ) can be shown to be (using θ := {κ, τ}),

L(θ) := log(π(y|κ, τ )) = log(det(Q(κ))) + n log(τ )− log(det(Q(κ) + τATA))

−τyTy + τ2yTA(Q(κ) + τATA)−1ATy + C .

Infeasible Cholesky — Infeasible Log-Determinants – Infeasible Exact Inference?

Standard method for computing log-determinant of psd. matrix Q:

1. Compute triangular Cholesky factor L, such that Q = LLT

2. Compute log(det(Q)) = log(det(LLT )) = log((
∏

i Lii)(
∏

j Ljj)) = 2
∑

i log(Lii)

Does this work for Sparse matrices?

A Sparse Symmetric Matrix

Non-zeros: 3.29 percent
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Cholesky Factor

Non-zeros: 13.23 percent
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Problem: Fill-in effect limits dimensionality due to finite memory. Intractable Likelihood!

Suggested Approach: High-Level

1. Compute a Monte-Carlo estimate of log(det(Q)) as in [2] and plug it into L(θ) = log(π(y|κ, τ ))

2. Use Russian Roulette [3] to get an unbiased estimator of exp (L(θ)), i.e., π̂(y|θ)

3. Use the Pseudo-Marginal-MCMC scheme [1] to sample from π(θ|y), i.e., use the Metropolis Hastings
acceptance probability

min

(

1,
π̂(y|θnew)× π(θnew)× q(θold|θnew)

π̂(y|θold)× π(θold)× q(θnew|θold)

)

for some proposal q. ⇒ Exact-Approximate Bayesian inference is possible!

Russian Roulette for the Exponential Function

Have: unbiased estimator L̂(θ). Want: unbiased estimator for π(y|θ) = exp(L(θ)).

1. Infinite series representation of exponential

exp(L(θ)) = 1 +

∞
∑

i=1

i
∏

j=1

L(θ)

j
= 1 +

∞
∑

i=1

L(θ)i

i !
= 1 +

L(θ)

1
+

L(θ)L(θ)

2
+
L(θ)L(θ)L(θ)

6
+ . . .

2. Unbiased estimate: Replace every L(θ) by independent unbiased estimate X (i) ∼ L̂(θ) for i = 1, 2, . . .

exp(L(θ)) = 1 +

∞
∑

i=1

i
∏

j=1

X (j ,i)

j
=: 1 +

∞
∑

i=1

αi .

3. Truncate the infinite sum
∑∞

i=1αi unbiasedly via a set of decreasing stopping probabilities
◮ Define threshold r and evaluate αi until finding j such that |αj | < r

◮ With some diminishing probability, for example qj :=
|αj |

r
< 1, continue evaluating with weight 1

qj

◮ Truncated terms, on decision not to continue, is the desired unbiased estimator

Estimating Log-Determinants – Rational Approximations and Krylov-Methods

Approach suggested in [2], based on sparse matrix-vector products.

1. Compute Monte Carlo estimates of log-determinants as

log(det(Q)) = tr(log(Q)) = Es(s
T log(Q)s) ≈

1

N

N
∑

i=1

sTi log(Q)si ,

where the source-vectors si are random realisations with zero mean and unit variance, e.g., si ∼ N (0, I).

2. Need log(Q)s. Use rational approximation of complex Cauchy contour integral (up to machine precision!).

log(Q)s ≈
1

2πi

M
∑

i=1

αi(Q− σi I)
−1s,

where α,σ ∈ CM are complex integration weights and shifts. Error bound for resolution M and accuracy ǫ:

M ∝ log
(

λmax(Q)
λmin(Q)

)

log(ǫ). Use Krylov-subspace methods to solve for (Q− σi I )
−1s.

3. Use graph-colourings to exploit sparsity structure of Q when generating source vectors si .
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Challenges in Russian Roulette – Stickiness and Computation Time

◮ Pseudo-Marginal MCMC is very sensible to variance in
π̂(y|θ), which affects mixing.

◮ Exponential function’s interesting places are at index
of same order as argument (see plot)

◮ Need many Russian Roulette iterations, otherwise
variance is catastrophic.

Extremely challenging to obtain good mixing!
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Approaching Feasibility: Reducing the Number of Estimates for Russian Roulette

1. Reduce absolute value. Find bound U such that U < X (i) < 0 and
perform RR on

exp(L(θ)) = exp(U)exp(L(θ)− U),

whose interesting parts are now closer to 0, i.e., need less RR itera-
tions to reach.
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2. Scale estimates. Find a positive integer E ≈ |L(θ)−U| and rescale

exp(L(θ)− U) =

(

exp

(

L(θ)− U

E

))E

Now need E RR estimates of exp
(

L(θ)−U
E

)

≈ exp(−1), which is

much better behaved.
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3. Average independent samples X (i) to reduce variance. For the prac-
titioner, there is a faster alternative with controllable bias.

4. Given estimates {X (i)}Ni=1, select group size d < N and create Ñ

index sets Ii that contain d unique indices j ∈ {1, . . . ,N}. Generate
Ñ pseudo-independent estimates

X̃ (i) =
1

d

∑

j∈Ii

X (j) (1 ≤ i ≤ Ñ),

which have lower variance. Introduced dependence is effectively
broken by permuting over different RR denominators

∏∞
n=1 n =

1 · 2 · 6 · 24 · . . . and bias can be controlled!
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Approaching Feasibility: Distributed Russian Roulette

◮ Approximating sTi log(Q)si corresponds to solving N ≈ 20 to 30 linear systems.

◮ Each estimate in
∑N

i=1 s
T
i log(Q)si is independent. M ≈ 20 to 50.

◮ Averaging multiple estimates of L(θ), which are independent. Needed ∼ 50

◮ Given appropriate hardware, potential speed-up of factor ∼ 75000. Exploit cluster computers.

Prepare Subtasks
MCMC

Synchronise

Worker
Idle

Worker

Prepare Collection

Solve linear system

Idle Solve linear system

Synchronise

Main-Node

Join Results/MCMC Step

Idle

Idle

Results – Current State – Work in Progress

Iteration
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