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Gaussian Processes Kernel-based hypothesis testing

Two Subjects?

I Gaussian Processes: Building block of many state-of-the-art
regression and classi�cation methods.

I (Logistic) Regression as Bayesian inference
I Model selection
I GSoC 2012 (Jacob Walker), GSoC 2013 (Roman Votyakov)

I Embedding distributions into kernel spaces:

I The very basic idea
I Two-sample testing (MMD)
I independence testing (HSIC)
I GSoC 2012 and afterwards (Me)

I Some Shogun demos

Are GPs and MMD related? Not really, but we wanted to talk
about both :-)

Bayesian regression andnon-parametric hypothesis testing Shogun Toolbox Workshop



Gaussian Processes Kernel-based hypothesis testing

Two Subjects?

I Gaussian Processes: Building block of many state-of-the-art
regression and classi�cation methods.

I (Logistic) Regression as Bayesian inference
I Model selection
I GSoC 2012 (Jacob Walker), GSoC 2013 (Roman Votyakov)

I Embedding distributions into kernel spaces:

I The very basic idea
I Two-sample testing (MMD)
I independence testing (HSIC)
I GSoC 2012 and afterwards (Me)

I Some Shogun demos

Are GPs and MMD related? Not really, but we wanted to talk
about both :-)

Bayesian regression andnon-parametric hypothesis testing Shogun Toolbox Workshop



Gaussian Processes Kernel-based hypothesis testing

Two Subjects?

I Gaussian Processes: Building block of many state-of-the-art
regression and classi�cation methods.

I (Logistic) Regression as Bayesian inference
I Model selection
I GSoC 2012 (Jacob Walker), GSoC 2013 (Roman Votyakov)

I Embedding distributions into kernel spaces:

I The very basic idea
I Two-sample testing (MMD)
I independence testing (HSIC)
I GSoC 2012 and afterwards (Me)

I Some Shogun demos

Are GPs and MMD related? Not really, but we wanted to talk
about both :-)

Bayesian regression andnon-parametric hypothesis testing Shogun Toolbox Workshop



Gaussian Processes Kernel-based hypothesis testing

Table of Contents

Gaussian Processes

Kernel-based hypothesis testing

Bayesian regression andnon-parametric hypothesis testing Shogun Toolbox Workshop



Gaussian Processes Kernel-based hypothesis testing

These are quite useful

For example for the usual classi�cation regression problems.
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Gaussian Processes Kernel-based hypothesis testing

Gaussian Processes are Bayesian

We get proper probability distributions for predictions.

I Calibrated con�dence level in [0, 1] for each prediction
(without hacks)

I Aware of uncertainty

I Framework to learn model parameters from data
(point-estimates or even integrate them out)
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Gaussian Processes Kernel-based hypothesis testing

Gaussian Processes are non-parametric

I No strong assumption to the data generating model (like in
linear/logistic regression)

I In fact, there are many connections to kernel methods (feature
embeddings)

I GPs involve distributions over model functions that can have
arbitrary (smooth) shapes
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Gaussian Processes Kernel-based hypothesis testing

Gaussian Processes are simple: Just three rules

1. Sum Rule: p(x) =
∑

y p(x , y) =
∑

y p(x |y)p(y)

2. Bayes Rule: p(y |x) = p(x |y)p(y)
p(x) = p(x |y)p(y)´

p(x |y)p(y)dy

3. Manipulate Gaussian distributions: Given

p(x , y) = N
([
µx
µy

]
,

[
Σxx Σxy

Σyx Σyy

])
,

then all

I p(x |y)
I p(x) =

´
p(x , y)dy =

´
p(x |y)p(y)dy

I p(x |y)p(y)

are Gaussian.
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Gaussian Processes Kernel-based hypothesis testing

The basic idea, formally

A Gaussian process is a collection of random variables, any �nite
number of which have a joint Gaussian distribution.

I We write a GP as a distribution over functions

f (x) ∼ GP(m(x), k(x , x ′)),

I m(x) is the mean function

I k(x , x ′) is the covariance function (or kernel).
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Gaussian Processes Kernel-based hypothesis testing

How these functions look like?

I We can sample f (x) for data X := {xi}ni=1 and X ∗ := {x∗j }mi=1

I Let f ∈ Rn and f∗ ∈ Rm with fi = f (xi ) and f ∗j = f (x∗j )

I Let K (X ,X ∗) ∈ Rn×m be the covariance between X and X ∗

f and f∗ are jointly Gaussian distributed:[
f

f∗

]
∼ N

(
0,

[
K (X ,X ) K (X ,X ∗)
K (X ∗,X ) K (X ∗,X ∗)

])
How the GP behave for test data X ∗ if it has seen training data X?

f∗|f ∼ N (µ,Σ), where

µ =K (X ∗,X )K (X ,X )−1f

Σ =K (X ∗,X ∗)− K (X ∗,X )K (X ,X )−1K (X ,X ∗)
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Gaussian Processes Kernel-based hypothesis testing

Prior and Posterior, once again

Intuition: Restrict distribution over functions to explain seen data
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Gaussian Processes Kernel-based hypothesis testing

How to model data with a Gaussian Process

Model the joint distribution over data y (i.e. labels) with
corresponding covariates X (i.e. features) as

p(y, f) = p(y|f)p(f),

where p(f) is the GP prior (as before), and p(y|f) is the likelihood
of the data given the latent variable f

, for example

I p(y|f) = N (f, σ2noiseI ) � regression with noisy observations

I p(y|f) =
∏n

i=1 σ(yi ,fi ) � binary classi�cation with activation

function σ : {−1,+1} × R→ [0, 1]

I many more, e.g. multi-class logit ⇒ No need for competitions
(OvO) as for SVMs, while still obtaining calibrated probabilities
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Gaussian Processes Kernel-based hypothesis testing

Example likelihood: Logit-based binary classi�cation

σ(y , f ) =
1

1 + exp(−yf )
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Gaussian Processes Kernel-based hypothesis testing

Predictions: Averaging over all possible f

Recall
p(y, f) = p(y|f)p(f).

Given data y and covariates X , we are interested in label
predictions for unseen covariates X ∗, i.e.,

p(y∗|y) =

ˆ
p(y∗, f∗|y)d f∗

=

ˆ
p(y∗|f∗)p(f∗|y)d f∗

= average p(y∗|f∗) over all possibilities of p(f∗|y)

Problem: Need to know p(f∗|y) =
´
p(f∗|f)p(f|y)d f.
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Gaussian Processes Kernel-based hypothesis testing

Problem: Need to know p(f∗|y) =
´
p(f∗|f)p(f|y)df

We know p(f∗|f), apply Bayes Rule to get second term

posterior = p(f|y) =
p(y|f)p(f)´
p(y|f)p(f)d f

=
likelihood × GP-prior

marginal likelihood
.

I Regression: p(y|f) is Gaussian ⇒ p(f|y) is Gaussian ⇒ :-)

I Binary Classi�cation with Laplace Approximation:

I p(y|f) is non-Gaussian ⇒ p(f|y) is not Gaussian ⇒ :-(
⇒Approximate p(f|y) with a Gaussian ⇒ :-)

I Find the (unique) maximum of p(y|f) ∝ p(y|f)p(f),
I then do a second order Taylor expansion around the mode.
I Solved in practice, similarities to SVM

I Many more: variational methods, sparsity methods, ...
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Gaussian Processes Kernel-based hypothesis testing

Model Selection: Hyperparameters
Covariance function have parameters, e.g., the Gaussian kernel

k(x , x ′) = γ2 exp

(
−||x − x ′||22

2σ2

)
has parameter σ, which controls the model complexity. Which one
to take?
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Gaussian Processes Kernel-based hypothesis testing

Model selection: ask the machine learning guy

I �Just select the best parameter...� Is that always reasonable?

I �Just do a grid-search�. That's ugly, in fact, we can do nicer.

I Recall the marginal likelihood of a GP, which is the averaged
likelihood over latent functions f ,

p(y |θ) =

ˆ
p(y |f )p(f |θ)df ,

where now the hyper-parameters θ, which in�uence the GP
prior p(f |θ), are included (e.g. θ = {σ, γ}). We can maximise
this, for example with gradient descent.

I Over-�tting? No! Ehm wait ... why?
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Gaussian Processes Kernel-based hypothesis testing

Occam's Razor for p(y |θ) =
´
p(y |f )p(f |θ)df

We average over all possible latent models f . If p(f |θ) is very rich,
each element will only contribute little � even if p(y |f ) is large.

I Too simple: Cannot explain many datasets, p(y |f ) small

I Too complex: Can explain data, but p(f |θ) small

I Just complex enough to explain data

Bayesian regression andnon-parametric hypothesis testing Shogun Toolbox Workshop



Gaussian Processes Kernel-based hypothesis testing

Occam's Razor for p(y |θ) =
´
p(y |f )p(f |θ)df

We average over all possible latent models f . If p(f |θ) is very rich,
each element will only contribute little � even if p(y |f ) is large.

I Too simple: Cannot explain many datasets, p(y |f ) small

I Too complex: Can explain data, but p(f |θ) small

I Just complex enough to explain data

Bayesian regression andnon-parametric hypothesis testing Shogun Toolbox Workshop



Gaussian Processes Kernel-based hypothesis testing

Model selection: ask the Bayesian guy

I When in doubt (small datasets), why not use all possible θ?

I Possible within GP framework, compute posterior

p(θ|y) =
p(y |θ)p(θ)´
p(y |θ)p(θ)dθ

,

and average predictions. Usually done via MCMC. Tricky.
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Gaussian Processes Kernel-based hypothesis testing

Demo Time!
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Table of Contents

Gaussian Processes

Kernel-based hypothesis testing
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Gaussian Processes Kernel-based hypothesis testing

How to detect di�erences? p(x) = q(y)?
Given two probability distributions p, q on a domain X , and two
�nite sets of iid samples drawn from them

X = {xi}ni=1 ∼ p Y = {yj}mj=1 ∼ q,

can we decide whether p 6= q with high con�dence?
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Gaussian Processes Kernel-based hypothesis testing

How to detect dependence? p(x , y) = p(x)q(y)?

. . . no doubt there is great

pressure on gouvernements and

municipal governments in rela-

tion to the issue of child care,

but the services de garde, real-

ity is that there have been no

cuts to child care funding from

the federal to the provinces. In

fact, we have increased federal

investments for early childhood

development. . .

. . . il estévident que les or-

dres de gouvernements provin-

ciaux et municipaux subissent

de fortes pressions en ce qui

concerne les services de garde,

mais le gouvernement n'a pas

réduit le�nancement qu'il verse

aux provinces pour les services

de garde. Au contraire, nous

avons augmenté le �nancement

fédéral pour le développement

des jeunes enfants. . .
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Challenging two-sample testing

Two-sample testing in high dimensional distributions with complex
structure:

I Classical methods are often not feasible.

I Strings/text-data (Websites, primary structure), Graphs
(Protein networks, social media), etc

I Mapping to vector space needed.

I We also do not want to make assumptions to p and q (like
t-test).
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The answer: with kernels!
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Reproducing Kernel Hilbert Spaces � the classic slide

Positive semi-de�nite kernel: k(x , y) = 〈φ(x), φ(y)〉H
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Reproducing Kernel Hilbert Spaces � mean embeddings

That was fun! Now let's do it with probability distributions
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Maximum Mean Discrepancy

Let x , y be random variables with attached probability distributions
p, q respectively. The kernel Maximum Mean Discrepancy is given
by

MMD2[F , p, q] = ||µp − µq||2H
= Ex ,x ′,y ,y ′

[
k(x , x ′) + k(y , y ′)− k(x , y ′)− k(x ′, y)

]
where x ′, y ′ are independent copies of x , y .

One can show
||µp − µq||2H = 0⇔ p = q

for certain kernels. Any pair of distributions can be distinguished.
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Sounds good, let's compute it from data

Given data X ,Y with |X | = |Y | = m, a quadratic time estimate is

1

m(m − 1)

m∑
i=1

m∑
j 6=i

k(xi , xj) + k(yi , yj)− k(xi , yj)− k(xj , yi ).

Powerful, a bit complicated to compute the test.

An alternative is
the linear time estimate: divide data into two halfs and compute

2

m

m

2∑
i=1

k(x2i , x2i−1) + k(y2i , y2i−1)− k(x2i , y2i−1)− k(x2i−1, y2i ).

Convenient properties: Possible to stream (big data♥), easy to
compute the test. Optimal kernel selection possible (!)
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Independence Test: Hilbert Schmidt Independence Criterion

Idea (roughly, skipping many details): Compute MMD between
p(x)q(y) and p(x , y). An estimate is

HSIC =
1

m2
trace(KHLH),

where K , L are the kernel matrices on data X ,Y respectively and
H = I − 1

n
11T.

I One can also view this as a norm of the kernel-covariance
operator between p and q

I The test, as for the quadratic time MMD, is a bit messy to
compute (permutation/bootstrapping)
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A nice application
Use a HSIC with a (spectrum) string kernel is able to detect
signi�cant dependence between EU parliament translations of the
same text into two di�erent languages.
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Demo time!
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Mark Girolami and Simon Rogers.
Variational Bayesian Multinomial Probit Regression with
Gaussian Process Priors.
Neural Computation, 18:1790�1817, 2006.

Arthur Gretton, Kenji Fukumizu, CH Teo, and Le Song.
A kernel statistical test of independence.
Advances in Neural Information Processing Systems, pages
1�8, 2008.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch,
Bernhard Schölkopf, and Alexander Smola.
A Kernel Two-Sample Test.
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Optimal kernel choice for large-scale two-sample tests.
In Advances in Neural Information Processing Systems, 2012b.

Simon J D Prince.
Computer vision : models , learning and inference.
Cambridge University Press, 2012.

Carl Edward Rasmussen and Zoubin Ghahramani.
Occam's Razor.
Advances in Neural Information Processing Systems, 13, 2001.

Carl Edward Rasmussen and Christopher K. I. Williams.
Gaussian Processes in Machine Learning.
MIT Press, 2006.

Heiko Strathmann.
M.Sc. Adaptive Large-Scale Kernel Two-Sample Testing, 2012.

C.K.I. Williams and D. Barber.
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Bayesian classi�cation with Gaussian processes.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(12):1342�1351, 1998.
ISSN 01628828.
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Thank you for your attention!

Questions?
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