
Universität Duisburg-Essen
Fakultät für Ingenieurwissenschaften

Abteilung Informatik und Angewandte Kognitionswissenschaft
Lehrstuhl Intelligente Systeme

- Bachelor-Arbeit -
im Bachelor-Studiengang

Angewandte Informatik

Adaptive Kernel Methods for Sequence

Classification in Bioinformatics

Heiko Strathmann

Gutachter:
Prof. Dr. J. Pauli

Prof. Dr. D. Hoffmann

Zeitraum: 07. Oktober 2010 bis 07. Januar 2011

This work describes usage of string kernel equipped Support Vector Machines (SVM)
to perform classification of sequences of amino-acids.

Two kernels are compared, namely the Distant Segments kernel (Boisvert et al.,
2008) and the Spectrum kernel (Leslie et al., 2002). A broad range of data is used to
test them.

Since SVM do not cover selection of all of a classifier’s parameters, in this work,
two of them need to be determined by hand: regularization parameter and kernel
parameter. Two methods for parameter search are compared: the widely used grid-
search and a self-developed improvement, which is based on bisection.

Grid-search has no guarantees regarding its correctness. In contrast, it is shown that
when certain requirements are met, along with being totally correct, the bisection
based method reduces time complexity for searching for one parameter from linear
(grid-search) to logarithmic. Empirical results suggest that the requirements for the
introduced bisection based search are met in the context of sequence classification and
search for regularization parameters.

The gained results show that the introduced overall approach generates high-quality
classifiers. The worst obtained one still does ∼ 75% correct classifications, best ob-
tained classifiers are nearly perfect. The DS-kernel, with exceptions, performs slightly
better than the Spectrum kernel.

In addition, an entropy based measure for a dataset’s extend of disorder is introduced
and examined for connections to classification severity. The observation is made that
divergent datasets form less severe classification tasks.

The introduced approach leads to results, which are well usable in practice and
therefore qualifies itself for further examination. In addition, many of the introduced
techniques are also suitable for non-biological, sequence based data.

Contents

1. Introduction 1
1.1. Task description . 1

1.2. Biological background and kernel methods 1

1.3. Literature Overview . 3

1.4. Selected Approach and Placement . 4

1.5. Chapter Overview . 5

2. Theoretical preliminaries 7
2.1. Statistical Learning Theory . 7

2.1.1. Fundamental Terms . 7

2.1.2. Risk Minimization . 8

2.1.3. Empirical Risk Minimization (ERM) 9

2.1.4. Structural Risk Minimization (SRM) 9

2.2. Support Vector Machines . 10

2.2.1. Separating Hyperplanes . 11

2.2.2. The Role of the Margin and Optimal Margin Hyperplanes . . . 12

2.2.3. Nonlinear Classification and Kernel Trick 13

2.2.4. Soft Margin Hyperplanes . 15

2.3. Kernels . 16

2.3.1. String Kernels . 17

2.3.2. Spectrum Kernel . 18

2.3.3. Distant Segments Kernel . 18

2.3.4. Examples and kernel parameters 19

3. Methods 21
3.1. Overview . 21

3.2. Cross-Validation, Stratified Cross-Validation 22

3.3. Performance Measures . 23

3.3.1. Basic Performance Measures 23

3.3.2. Receiver Operating Characteristic and Area Under the Curve . 24

3.3.3. Performance Measures and Cross-Validation 25

3.4. Reduction of Experimental Variance 25

3.5. Parameter Selection . 26

3.5.1. Grid-Search . 27

3.5.2. Parameters to Search for . 27

3.5.3. Different Performance Measures 28

v

3.5.4. Grid-Search: Parameters, Performance and Costs 28

3.6. Bisection Based Method for Searching for Regularization Parameters . 30

3.6.1. Motivation: Costs and Accuracy 30

3.6.2. Basic Idea: Bisection . 30

3.6.3. Algorithm . 31

3.6.4. Parameters, Performance and Costs 34

3.6.5. Problems: Continuity & Uncertainty 37

3.6.6. Conclusion . 39

3.7. Entropy . 39

3.7.1. Motivation: Disorder of Data 39

3.7.2. Sequence Based Entropy . 41

3.7.3. Properties . 43

4. Experimental Results 47

4.1. Experiment Description . 47

4.1.1. Preliminaries: Performance Measures and Variance 47

4.1.2. Main Experiment: Search for Best Parameters 48

4.1.3. Different Data and Kernels . 48

4.2. Different Performance Measures . 50

4.2.1. AUC . 50

4.2.2. Accuracy versus F-measure . 50

4.2.3. Interim Summary . 51

4.3. Experimental Variance: Repetitions and Averaging 51

4.4. Parameter Search . 53

4.4.1. Regularization Parameter . 55

4.4.2. Dimension of Feature Space and Regularization Parameter . . 55

4.4.3. Kernel Parameters of Different Kernels 57

4.4.4. Interim Summary . 59

4.5. Different Kernels, Different Datasets 59

4.5.1. Best Found Classifiers . 60

4.5.2. Kernel Comparison . 62

4.5.3. Datasets B and D: Different Disorder and Classification Severity 63

4.5.4. Datasets E and F: Similar Disorder and Classification Severity 64

4.5.5. Dataset C: Nearly Perfect Results 65

4.5.6. Interim Summary . 66

4.6. Bisection Based Search for Regularization Parameters 67

5. Summary and further work 71

5.1. Summary . 71

5.2. Further work . 73

Appendices 75

vi

A. Implementation 77
A.1. Used Soft- and Hardware . 77
A.2. Implemented Software . 78
A.3. Tools . 80

A.3.1. Kernel Matrix Generation . 80
A.3.2. Entropy Tools . 80
A.3.3. Single Classifier Evaluation . 81

B. Proofs 83

C. Amino-acids 87

D. Sequence Length Histograms 89

E. Curves of Sequence Based Entropy 95

vii

1. Introduction

1.1. Task description

The task of this work is to perform binary classification of sequence based, biological
data, with use of kernel methods for supervised learning, namely Support Vector Ma-
chines equipped with string-kernels.

Classification here means to ascribe data to a known set of classes or categories.
Binary classification induces two categories. In context of biological data, this means
that data is categorized by having or not having a certain attribute. An example are
viruses, which are or are not resistant to a certain drug.

To build a classifier, some kind of learning has to take place. The task of this
work involves supervised learning, meaning that a set of already categorized data, a
training set, is used to build a classifier. This classifier should on the one hand be
able to correctly classify data in the training set, to memorize some of it, and on the
other hand be able to correctly classify unknown data, which is similar to data in the
training set, to generalize. These two abilities are in conflict with each other.

Support Vector Machines are a popular tool for classification tasks. The concept is
based on a linear separation of representations of data in a dot-product space. Using
a kernel, which induces the latter, they can be extended to directly work on any kind
of data, like in this work: character sequences of different lengths.

Since the underlying dot-product space may be of a large dimension, linear sepa-
ration in it corresponds to non-linear separation of input data and allows to work on
highly complex data. With the use of string-kernels, non-linear classification may be
performed on sequential data without the need of preprocessing it.

Data, which is provided along the task of this work, consists of binary labeled
sequences of amino-acids, namely polypeptides, which are chains of between ten and
one-hundred amino-acids, and larger chains, so called proteins. In the following, it
is motivated why a sequence based representation of biological data may be used for
classification.

1.2. Biological background and kernel methods

The “central dogma” in molecular biology is that information of an organism is stored
in its genome, namely the DNA. DNA consists of four different types of molecules called
nucleotides from which sequences are built. These sequences encode the “construction

1

plan” of an organism. When a gene is read by a cell, DNA is transcribed into RNA,
which is a similar copy of the original molecules. Then, this RNA is fed into a structure
called ribosome, which translates the RNA-sequence to a sequence of amino-acids, a
protein or polypeptide. There are 20 amino-acids and therefore, they can easily be
coded into letters. A list of all amino-acids and their letter representation can be
found in appendix C.

Proteins are produced in cells, which are the smallest independent parts of an or-
ganism. Every protein has a different function and can be seen as a tool, which the
cell produces to accomplish a certain task. For example, enzymes are proteins, which
catalize biochemical reactions, for example in context of food processing in the human
body.

The three-dimensional structure is most important regarding function of a pro-
tein, however, this structure is determined by the underlying sequence of amino-acids.
The “central paradigm” in bioinformatics states that similar sequence leads to similar
molecular structure, which itself leads to similar function.

The motivation to work on sequences of amino-acids comes from this paradigm. It
is expected to determine function of yet unknown sequences by examining sequences
with known function. Applications are for example a gene test for HIV-patients to de-
termine whether the virus is resistant to a certain drug, protein super-family detection
or to determine if a protein binds to a certain type of cancer cells to build effective
drugs.

Since capacities of databases and speed/quality of protein transcriptions are increas-
ing enormously, the amount of available sequence data grows very fast in contrast
to possibilities of determining its function manually. Computer aided processing is
though an important tool to handle such masses of data. It is expected to derive new
biological knowledge from experiments on available data.

Biological data is by nature very complex, making it hard to efficiently build models.
In the mid 1990s kernel based learning methods were developed which were able to
analyze nonlinear problems with the same efficiency, which was achievable with linear
approaches. A concept, which was developed along and benefits from kernel methods
is the concept of Support Vector Machines, a learning algorithm which offers a strong
theoretical fundament for linear classification problems. They have empirically shown
to be robust and powerful in many works. With use of kernel methods, strength of
SVM learning becomes available for nonlinear problems. This results in the ability to
efficiently perform pattern recognition on complex data.

Another advantage is that usage of kernels allows to process non-numerical data
directly, without the need to transform it into a numerical representation before. This
is especially useful when using input data of variant length, like strings.

The overall concept is a promising approach for handling biological data and is used
since about ten years. New, finer methods for handling protein data are still developed
and form an active field of research.

2

1.3. Literature Overview

Since the focus of this work is not on biology, only a brief and coarse introduction to
it is given. All details, which are necessary for this work, can be found in textbooks,
like for example (Merkl and Waack, 2009).

Support Vector Machines also have made their way into various textbooks. The
book (Cristianini and Shawe-Taylor, 2000) gives an introduction to basic concepts,
which come along. In (Schölkopf and Smola, 2001) some advanced concepts, like soft-
margin classifiers are described. An analysis of statistical learning theory behind SVM
can be found in (Vapnik, 2000).

Pattern recognition is a vast field in machine learning. In (Bishop et al., 2006), a de-
tailed introduction can be found. (Shawe-Taylor and Cristianini, 2004) describes how
to use kernel methods for pattern recognition both concerning theoretical concepts as
concrete applications. (Schölkopf and Smola, 2001) also contains a large part about
kernels.

The use of kernel methods for classification of sequence based, biological data began
around ten years ago. The first used approach, the Fisher -Kernel (Jaakkola et al.,
1999) computes a similarity measure of proteins and is based on prior knowledge,
which is gained using a hidden Markov model.

String-kernels compute a similarity measure between two strings. Computing simi-
larities of sequences has been studied for a long time in bioinformatics. On the base of
bio-chemical similarities of single amino-acids, the Smith-Waterman-algorithm com-
putes the optimal local alignment1 of two amino-acid chains (Smith and Waterman,
1981). A kernel, which is based this algorithm is the Local Alignment Kernel (Saigo
et al., 2004). Although knowledge of bio-chemical processes is included here, more
general approaches, which do not take external knowledge into account, led to better
results. Besides, this kernel has many parameters to select, which is a problem, as
described later in this work.

A very general way of computing a similarity measure of two strings is the Spectrum
Kernel, (Leslie et al., 2002) or (Shawe-Taylor and Cristianini, 2004, 347-351). It is a
very simple and intuitive approach based on counting occurrences of subsequences of
a certain length. It has shown to perform well in the context of protein classification.
Its main advantage is that it is computable in linear time, which is a nice property
when handling huge masses of data, as often the case in a biological context. It is
noteworthy that no external biological knowledge is included. Therefore, it may be
applicable for other problems dealing with sequence based data.

An extension to the Spectrum Kernel is the Blended Spectrum Kernel, which counts
occurrences of sequences up to a certain length (Shawe-Taylor and Cristianini, 2004,
347-351).

1An alignment is a way of arranging two or more sequences to identify common parts. For details,
see (Merkl and Waack, 2009)

3

In (Boisvert et al., 2008), an extension to the BS-kernel, the so called Distant Seg-
ments Kernel is introduced. It is also does not use any biological knowledge, but takes
distances of subsequences into account, which is biological meaningful. According to
this paper, the DS-kernel outperforms the BS-kernel and the Spectrum kernel and is
the “state-of-the art” for certain types of problems.

There are also string-kernels, which do not work on sequences of characters, but on
sequences of words, so called word-based kernels. These are for example used in com-
puter vision (e.g. (Csurka et al., 2004)) and text categorization tasks (e.g. (Joachims,
1998)). Since the task of this work is to classify sequences of amino-acids, which are
represented by single letters, word based kernels are not suitable.

1.4. Selected Approach and Placement

Methods, which are used in this work are mainly part of the task: SVM and string-
kernels. As for SVM, the so-called soft margin C-SV classifier is used, which is a
standard choice in literature. The kernel choice is partly based on results of (Boisvert
et al., 2008), which imply that the DS-kernel is “state-of-the-art”. To compare the
impact of taking sequences up to a certain length into account to taking sequences
of a certain length into account, the Spectrum kernel is compared to the DS-Kernel.
Both kernels are also interesting from a non-biologist’s point of view, because they
might be applicable for other, non-biological problems, which are based on sequential
data.

Both, the kernels and the SVM have one parameter to set manually. To do this, a
grid-search is performed. The latter is also examined for possible improvements and
an advanced method, which is based on bisection, is introduced and compared to the
grid-search. To perform a search for best parameters, a classifier has to be evaluated
and to be compared.

To evaluate a classifier, it has to be tested, especially for its generalization ability.
In this work, the widespread technique of cross-validation, as for example described in
(Hsu et al., 2003), is used. Techniques for averaging results of different cross-validation-
folds are taken from (Forman and Scholz, 2009). ROC -graphs are a widely used tool
for classifier comparison and are used on the base of (Fawcett, 2003). Other measures
for comparing classifiers are standard choices, namely Accuracy and F-measure.

Software is implemented in the language R, using SHOGUN (Sonnenburg et al.,
2006), which is a software framework for machine learning applications and, among
others, uses the widespread LIBSVM (Chang and Lin, 2001) SVM implementation.
There exist other machine learning packages for R, for example kernlab (Karatzoglou
et al., 2004), which was used at first, until a bug, which caused software freezes hindered
further usage. Kernel matrices are pre-calculated, since on-line evaluations of kernels
take a lot of time in context of string kernels. Many available SVM implementations
do not natively support strings as input data, or easy use of custom kernel matrices

4

(e.g. OpenCV2, SVMLight3 or pure LIBSVM), however, SHOGUN does.

Datasets are chosen in such way that a broad spectrum of attributes is covered:
Simple and complex data, short and long sequences, small and large length variance,
easy and severe classification tasks, etc. To avoid biased results, multiple types of
classification tasks are included: Drug resistance, virus attributes/identification and
protein super-family detection. Even though all datasets contain problems in context
of bioinformatics, the focus is not on biological attributes of these data, but more on
the general approach of classification of different kinds of data.

Although this work has a strong connection to bioinformatics, many of its results
are not limited to this subject.

The concept of SVM is applied to many non-biological pattern recognition prob-
lems. The use of string-kernels is also not limited to bioinformatics. In particular the
kernels, which are used in this work, are not based on external biological knowledge
and may be applied to other problems, for example in context of computer-vision.
Consequently, results regarding connections between attributes of datasets and clas-
sification performance may be re-used in other contexts. Evaluation of classifiers is a
standard topic, so all methods and results, which are introduced are of generic value.
Parameter search is another standard topic, which even forms an own area of research.
The search-techniques which are described are usable in any SVM/kernel context.

The used datasets solely contain biological problems, so their individual results are
a contribution to bioinformatics and may be used to compare the approach described
in this work to other techniques.

1.5. Chapter Overview

Note: In the beginning of each chapter, a short summary of its content is given. Then
all resources, which are used in the chapter are stated with reference to each section,
to omit permanent citation during the text.

Chapter 1 contains the task description, background information, literature overview, the
selected approach for solving the task and placement of this work.

Chapter 2 introduces theoretical preliminaries, which are used in this work. This includes a
definition of classifiers, basics of statistical learning theory and risk minimization,
the concept of support vector machines with focus on their construction and their
margin, the kernel trick and a description of the two kernels, which are used.

Chapter 3 gives an overview of methods, which are used in this work. First, an overview
of the approach of building a classifier is given. This is followed by the concept
of stratified cross-validation. Then, used performance measures are introduced,

2http://opencv.willowgarage.co
3http://svmlight.joachims.org

5

http://opencv.willowgarage.com
http://svmlight.joachims.org

namely Accuracy, F-Measure and AUC, and methods for decreasing experimen-
tal variance are introduced. The important subject of parameter selection starts
with introduction and analysis of the grid-search. Then, a self-developed, bi-
section based technique for maximizing an unknown function, which is based
on stronger assumptions and may be applied to parameter search, is described.
Finally, a measure for disorder of a dataset, the sequence based entropy is de-
scribed.

Chapter 4 starts with a description of performed experiments and used data. Then, re-
sults of the experiments are presented. These are interpreted regarding different
performance measures, experimental variance reduction, attributes of used data
and the parameter search. Then, results of selected datasets and kernels are
compared. Finally, results of the bisection method for parameter search, are
given.

Chapter 5 summarizes approach and results of this work and gives a perspective for further
work.

Appendix A is a brief description of software, which is implemented. All used components
and tools are briefly described.

Appendix B contains a proof of the introduced algorithm for bisection based parameter
search, which was omitted in the main text.

6

2. Theoretical preliminaries

In this chapter, the basic theoretical concepts that are needed throughout this work are
introduced. Section 2.1 starts with fundamental terms around classification, to have
a formal setting. Then, basics of statistical learning theory and risk minimization are
given, in particular details about Empirical Risk Minimization and the more important
Structural Risk Minimization.

The latter forms the fundament of Support Vector Machines, which are described for
binary, linear classification problems in section 2.2, with focus on their construction
and the margin.

Section 2.3 describes the fundamentals of kernels, which extend the SVM concept to
non-linear problems. The kernels, which are used in this work are described in detail,
namely the Spectrum Kernel and the Distant Segments Kernel.

Most subjects in this chapter are based on external resources, except for some formal
details. Note, that due to limited space, only a quick and brief introduction is given.
For further details, see section 1.3 for literature.

Section 2.1.1 is a collection of definitions and terms that are used in the chapter.
As for the rest of the statistical learning theory part in section 2.1, the text is mainly
based on two resources. The beginning, section 2.1.2 and section 2.1.3 are a summary
of (Vapnik, 2000, 17-22). The example in 2.1.3 is taken from (Schölkopf and Smola,
2001, 8). Section 2.1.4 comes from (Schölkopf and Smola, 2001, 9-11) and (Vapnik,
2000, 93-95).

Section 2.2, which introduces support vector machines, is a summary of the main
parts of (Schölkopf and Smola, 2001, 189-205).

The introduction of kernels in section 2.3 states used resources. The formal setting
for working with strings, which is given in section 2.3.1 is not based on external
resources. The introduced kernels are taken from (Boisvert et al., 2008) and (Leslie
et al., 2002). The formal description was extended at some points to be more accurate.
Section 2.3.4 is not based on any external resources.

2.1. Statistical Learning Theory

2.1.1. Fundamental Terms

Let X be a set called instance space in which classification takes place. Its elements
are called patterns. Let Y be a set containing elements that are referred to as class
labels. Assuming that every x ∈ X corresponds to some y ∈ Y , there exists a total
function s : X → Y which maps every pattern in the instance space to a class label.

7

This function, called supervisor, is usually unknown and is to be estimated. For every
x ∈ X, it holds y := s(x). A classifier is a function c : X → Y which is wanted to
approximate s. A classifier behaves perfect if for any x ∈ X, it holds c(x) = s(x).

In the context of this work, X consists of strings over a given finite alphabet. The
classification problem is binary, meaning that |Y | = 2.

Let T = {(xi, yi) | (xi, yi) ∈ X × Y and yi = s(xi)} be a training set of m examples
(1 ≤ i ≤ m). A learning algorithm is an algorithm that outputs a classifier after
reading the training set. This is a supervised learning situation.

Learned classifiers should be able to generalize. This means that given a yet unseen
pattern x ∈ X, a classifier c should predict the corresponding label y = c(x) in such
way that (x, c(x)) is in some sense similar to the examples in the training set.

Let each xi of all (xi, yi) in the training set be randomly and independently drawn
according to a fixed, but unknown probability distribution function F (x). Let the
output of the supervisor s be according to a conditional function F (y|x), which is
fixed but unknown. Let the training set consist of m independent and identically
distributed (i.i.d.) observations drawn according to F (x, y) = F (x)F (y|x).

A learning machine implements a set of functions f(x, α), α ∈ Λ, where Λ is a set of
parameters. A classifier may be derived from this set. The problem of learning is that
of choosing from the given set of functions f(x, α), the one, which best approximates
the output of the supervisor function.

2.1.2. Risk Minimization

The problem of choosing from a set of functions the one, which is best suited for a
certain problem is closely related to risk minimization. It is intuitive to choose the
function with minimal erroneous results in classification.

Given an element x ∈ X, a loss function L(y, f(x, α)) measures the loss, or discrep-
ancy between output of the supervisor and f(x). In the binary case, with Y = {−1, 1}
and f(x, α) ∈ Y , the loss function is given by

L(y, f(x, α)) =

{
0 if y = f(x, α),

1 if y 6= f(x, α).

The expected value of the loss, given by

R(α) =

∫
L(y, f(x, α))dF (x, y),

is called the the risk functional ot actual risk. Its value equals the probability of
misclassification. The goal is to find the function f and the parameter α that minimize
R(α). The only information to do this is in the training set.

8

Figure 2.1.: Minimizing the empirical risk may fail: Both curves do perfectly explain
the training data (blue points), but lead to different models.

2.1.3. Empirical Risk Minimization (ERM)

It is not possible to calculate R(α), if the underlying probability distribution func-
tion F (x, y) is unknown. However, it is still possible to calculate the empirical risk
functional

Remp(α) =

m∑
i=1

L(yi, f(xi, α)), (2.1)

which is independent of F (x, y).

The empirical risk converges to the actual risk for m → ∞. Unfortunately the
number training patterns is limited, so trying to minimize R(α) by minimizing Remp(α)
might fail. There are cases where a classifier with a low empirical risk is derived from
the training set, but does not behave well on other, unknown data. This is called over-
fitting. More formal this means that for any function (or classifier) f : X → Y and any
test set (x̄1, ȳ1), ..., (x̄m̄, ȳm̄) ∈ X×Y of size m̄, satisfying {x̄1, ..., x̄m̄}∩{x1, ..., xm} = ∅,
there exists another function f∗ such that f∗(xi) = f(xi), for all i ∈ {1, ...,m}, but
f∗(x̄i) 6= f(x̄i), for all i ∈ {1, ..., m̄}. Figure 2.1 shows an example.

As only the training data is given, there is no chance of knowing which of the
functions is preferable. To overcome this problem, the complexity of the functions is
taken into account. This leads to the SRM-principle.

2.1.4. Structural Risk Minimization (SRM)

The basic idea of the SRM-principle is to have a trade-off between quality of ap-
proximation of training data and complexity of approximating classifier functions. In
(Vapnik, 1998), it is shown that with probability 1− δ, it holds that

R(α) ≤ Remp(α) + φ(h,m, δ), (2.2)

where φ(h,m, δ), called the confidence term, increases monotonically in h. h is the
VC-dimension, which is a measure of capacity/complexity of a learning machine (see
Vapnik (2000) for details).

9

Empirical risk

Confidence term

Risk bound

hbest classifier

Figure 2.2.: The actual risk is bounded by the empirical risk and the confidence term.

The inequality (2.2) itself is not used to derive risk bounds in practice, but forms the
theoretical fundament of the SVM method. In particular, it is well suited to explain
the SRM-principle:

For φ(h,m, δ) to be small, the complexity of a learning machine has to be kept
small (in relation to m) since φ(h,m, δ) increases monotonically in h. At the same
time, to keep the empirical risk small, h must be large enough to provide a set of
functions, which are able to model possibly complex hidden dependencies in F (x, y).
The empirical risk is monotonically decreasing in h, therefore the capacity of the
learning machine increases with a larger h, and the machine can fit the data better.
Given multiple learning machines, the one that leads to the lowest bound for the actual
risk is chosen. Since the empirical risk monotonically decreases in h, the confidence
term monotonically increases in h and the risk is bounded by the sum of these two,
its minimum lies at their point of intersection. Figure 2.2 depicts this principle. “The
SRM principle defines a trade-off between the quality of the approximation of the given
data and the complexity of the approximating function.” (Vapnik, 2000, 95).

2.2. Support Vector Machines

Support Vector Machines (SVM) are based on a learning algorithm, which implements
structural risk minimization by keeping the empirical risk fixed and minimizing the
confidence term. They are a result of statistical learning theory. The SVM method is
based on the case of linear separability of data and then is extended to situations, in
which data is not linearly separable. In the following, it is assumed that the training
data has the form T = {(x1, y1), ..., (xm, ym)} with each (xi, yi) ∈ X × {1,−1} for
1 ≤ i ≤ m and X ⊆ H where H is a dot product space1.

1A dot product space is a vector space endowed with a dot product.

10

w

Figure 2.3.: Examples of possible linear separations of patterns.

2.2.1. Separating Hyperplanes

Two sets U ⊆ H, and V ⊆ H are said to be linear separable if there exists a vector
w ∈ H and a number b ∈ R, so that for any u ∈ U and any v ∈ V , it holds

〈w,u〉 ≤ b < 〈w,v〉.2 (2.3)

If A and B are finite and linear separable, they are also absolutely linear separable,
meaning that ≤ in the inequality becomes < (see for example (Rojas and Feldman,
1996)). Figure 2.3 shows an example of linear separation.

Two sets of vectors in H that are linear separable can be separated by a |H|-
dimensional hyperplane. Analogous to (2.3), any hyperplane, which separates the
data can be written as

{x ∈ H | 〈w,x〉+ b = 0}, w ∈ H, b ∈ R, (2.4)

where w is a vector orthogonal to the hyperplane. If w has unit length, then 〈w,x〉 is
the length of x along the direction of w. In general, w is scaled by ||w||, where ||w|| is
the euclidean norm

√
〈w,w〉 of w. x and b may be multiplied by the same non-zero

constant without changing the hyperplane. Using this, a hyperplane may be brought
to a standard form. Given a set of vectors x1, ...,xm ∈ X, the pair (w, b) ∈ H × R is
called canonical form of the hyperplane (2.4) with respect to x1, ...,xm, if it is scaled
such that

min
i=1,...,m

|〈w,xi〉+ b| = 1. (2.5)

Given a canonical form of a hyperplane, which separates training data (x1, y1), ..., (xm, ym) ∈
X × {1,−1}, it holds that

yi(〈xi,w〉+ b) ≥ 1.

A hyperplane corresponds to the decision function or classifier, given by

fw,b : X → {1,−1} with fw,b(x) = sgn (〈w,x〉+ b). (2.6)

2〈w,x〉 is the dot product
∑|H|

i=1 wixi (with wi and xi being the i-th component) of w and x.

11

2.2.2. The Role of the Margin and Optimal Margin Hyperplanes

Given a hyperplane, which is similar to (2.4)

ρ(w,b) :=
y(〈w,x〉)
||w||

(2.7)

is called the geometrical margin of x. The minimum value

min
i=1,...,m

ρ(w,b)(xi, yi) (2.8)

is called the (geometrical) margin of training data (x1, y1), ..., (xm, ym).
In (Vapnik, 2000), a theorem is shown, which explains why a large margin is de-

sirable. Given training data (x1, y1), ..., (xm, ym) with all xi ∈ H being situated in a
sphere of radius of R and a set of hyperplane classifiers (2.6) with the margin ∆, the
classifiers VC-dimension h is bounded by the following inequality

h ≤ min

(
bR

2

∆2
c, |H|

)
+ 1.

Consequently, a large margin leads to a small confidence term in the risk bound
(2.2). Given a canonical form of a hyperplane that separates some training data,
along with (2.5), (2.10), (2.7) and (2.8), it follows that the geometrical margin of the
training data is 1

||w|| . Therefore, maximizing the margin is equivalent to minimizing

||w||.
The theorem also gives a finite bound for the VC-dimension of a set of classifiers

in an infinite dimensional dot-product space, which is important for classification in
such a space.

A hyperplane that generalizes well can be constructed by solving the following min-
imization problem

minimize
w∈H,b∈R

1

2
||w||2, (2.9)

subject to
yi(〈xi,w〉+ b) ≥ 1, (2.10)

which is called the primal optimization problem.
The problem may be solved using the Lagrangian

L(w, b,α) =
1

2
||w||2 −

m∑
i=1

αi(yi(〈xi,w〉+ b)− 1), (2.11)

where α = (αi, ..., αm) are called Lagrange multipliers. The Lagrangian must be maxi-
mized with respect to αi, and minimized with respect to w and b. This corresponds to
finding a saddle point. Consequently, the derivatives of L with respect to the primal
variables must vanish,

∂

∂b
L(w, b,α) =

m∑
i=1

αiyi = 0, (2.12)

12

max

Figure 2.4.: Example for a linear classifier with maximal margin. The blackened pat-
terns are the support vectors of the separating hyperplane.

and
∂

∂w
L(w, b,α) = w−

m∑
i=1

αiyixi = 0⇔ w =
m∑
i=1

αiyixi. (2.13)

According to the Karush Kuhn Tucker conditions, only Lagrange multipliers αi 6= 0,
which are situated at the saddle point, correspond to the constrains (2.10). The
patterns xi for which αi ≥ 0 are called Support Vectors and give the name to the
method. Figure 2.4 shows an example of a linear separation with maximum margin.

Substituting (2.12) and (2.13) into (2.11) leads to the dual form of the primal
optimization problem

maximize
α∈Rm

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj〈xi,xj〉, (2.14)

subject to

αi ≥ 0, for all i ∈ {1, ...,m} and

m∑
i=1

αiyi = 0. (2.15)

Substituting (2.13) into the decision function (2.6) leads to

f(x) = sgn

(
m∑
i=1

αiyi〈x,xi〉+ b

)
. (2.16)

This is an expression which is evaluated by only using the dot product of the to be
classified patterns and the Support Vectors.

2.2.3. Nonlinear Classification and Kernel Trick

The above introduced method fails if given training data is not linear separable. This
problem can be overcome by introducing a high dimensional dot-product space called
the feature space, mapping data into and perform classification in such a space. Any

13

feature map

Figure 2.5.: The idea of kernel methods for classification: Usage of a feature map al-
lows linear classification of non-linear data in a higher dimensional feature
space. Left is the input space X, right is the feature space F .

data is linear separable if an appropriate high dimension of such feature space is chosen.

Let F be such a high dimensional dot-product space. The feature map, given by

Φ : X → F ,

transforms every element xi of the training data into its so-called feature vector Φ(xi)
in F .

The optimization problem (2.14) and the decision function (2.16) are modified by
substituting all vectors by their feature vectors. Figure 2.5 shows an example. This
leads to some computational problems. Since the dimension of F can become very
large (even infinite) the computation of Φ may be expensive since every element of
the training data has to be transformed to its feature vector.

The described problem of computational expense is avoided in a very elegant way
by introducing so called kernel functions in the form of

k : X ×X → R with k(x, x′) = 〈Φ(x),Φ(x′)〉.

Using a kernel (function) allows to solve the optimization problem (2.14) and to
evaluate the decision function (2.16) without the need to compute or even to know Φ.
The optimization problem then becomes

maximize
α∈Rm

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjk(x,xi), (2.17)

with subject to

αi ≥ 0, i ∈ {1, ...,m} and

m∑
i=1

αiyi = 0.

The decision function becomes

f(x) = sgn

(
m∑
i=1

αiyik(x,xi) + b

)
. (2.18)

14

Hard-margin classifier Soft-margin classifier

Figure 2.6.: Left is an example of a hard margin classifier. Single outliners drastically
change the classifier and the margin becomes smaller, which is not desir-
able. Using a classifier, which allows single outliners (right), leads to a
better classifier.

Since the individual elements of the feature vectors are not used in any form, H
may even be infinite. Another very important advantage is that only output values of
the kernel function are used for building a classifier. Thus, the input data now is not
anymore limited to a dot product space, but may take any form. Using appropriate
kernel functions, one may build classifiers working on different data-structures like
graphs, vectors in spaces with different dimensions or, like in this work: strings. Since
a dot-product can be seen as a similarity measure in X , the kernel function’s output
can be seen as a similarity measure in F .

2.2.4. Soft Margin Hyperplanes

In practice, a separating hyperplane constructed by the above method is not the best
choice, since all patterns are taken equally into account. This means that outliners near
to the hyperplane may drastically change the result. Figure 2.6 shows an example. An
algorithm, which tolerates a certain fraction of outliners is desirable. Unfortunately,
the problem of finding a hyperplane whose training error is bounded by a constant
is NP-hard (Ben-David and Simon, 2001). Instead, patterns in the feature space are
allowed to violate the margin inequality (2.10). This is done by introducing the so-
called slack variables

ξi ≥ 0, 1 ≤ i ≤ m (2.19)

to relax the separations constraints

yi(〈xi,w〉+ b) ≥ 1− ξi, 1 ≤ i ≤ m. (2.20)

By making ξi large enough, the new constraints (2.19) can always be met. In order
not to obtain this trivial solution, the slack variables need to be penalized in the

15

objective function (2.9). This is referred to as C-SV classifier and is done by solving
the following minimization problem for some C > 0,

min
w∈H,b∈R,ξ∈Rm

1

2
||w||2 +

C

m

m∑
i=1

ξi,

subject to the constraints (2.20) and (2.19).

The optimization problem (2.17) then becomes

max
α∈Rm

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjk(x,xi),

with subject to

0 ≥ αi ≥
C

m
, i ∈ {1, ...,m} and

m∑
i=1

αiyi = 0.

C is referred to as regularization parameter of the SVM. Depending on the size of
C, the margin may become larger than in the hard-margin case, but never smaller.
The resulting hyperplane is not different to one built with a hard margin when ξi = 0
for all 1 ≤ i ≤ m. A very high value of C has the same effect. The violations of
(2.20) are penalized very hard, resulting in a smaller margin. A very low value of C
results in a larger margin, as the penalty is small even for large values of ξi. Since a
margin, which is either very small or very large leads to more errors in classification
of unknown examples, it has to be chosen in such way that the number of errors is
minimal.

2.3. Kernels

The so called gram matrix (or kernel matrix) K of a kernel k : X × X → R and
patterns x1, ...,xm ∈ X is given by

Ki,j = k(xi, xj). (2.21)

Given a feature map Φ : X → F , the kernel is trivially given by k(x, x′) =
〈Φ(x),Φ(x′)〉. Given a symmetric function k : X×X → R and patterns x1, ...,xm ∈ X,
the Mercer condition (Mercer, 1909) induces that k is a kernel function if and only if
its gram matrix K is positive semi-definite, meaning that for any z ∈ Rm

zTKz ≥ 0. (2.22)

This criterion can be used to find new kernels. The choice of the kernel function
is critical regarding performance of a learning machine which uses SVM. Different
kernels lead to different feature spaces with different dimensions and has consequences

16

for classification quality. Note that kernels have to be chosen a-priori, since their
performance strongly depends on the type of underlying data.

As suggested in (Graepel, 2001), in this work, all kernels are normalized implicitly
before being used for SVM learning. Given a kernel k : X ×X → R, the normalized
kernel k̂ : X ×X → R is given by

k̂(x, x′) =
k(x, x′)√

k(x, x)k(x′, x′)
. (2.23)

Details can be found in (Shawe-Taylor and Cristianini, 2004, 112).

2.3.1. String Kernels

In this work, Support Vector machines are used to classify sequences of amino-acids,
which can be represented by characters, so kernels which on strings are used. A string
kernel computes a similarity measure of two strings. This may be done generically, or
by taking a-priori knowledge of nature of underlying data into account. For example,
there are kernels, which work on sequences of amino-acids that take chemical similar-
ities of individual letters into account (an example is in 1.3). However, the possibility
of applying these kernels to any kind of sequence based data is restricted. Addition-
ally, recent results show that biologically motivated kernels are even outperformed by
generic ones (Boisvert et al., 2008). The kernels used in this work do not depend on
any biological or chemical knowledge and thus can be applied to any kind of sequence
based data.

In the following, A is an finite alphabet with |A| = l ≥ 1. A string of length n ∈ N0

is a sequence s = a1...an of |s| = n characters (ai ∈ A). ε is the empty string with
|ε = 0|.

A∗ = {a1...an | ai ∈ A, n ∈ N0}

is the set of all strings that can be built using A. A+ = A∗ \ {ε} is the set of strings
with at least one character. The set of all possible strings of a fixed length k ∈ N over
an alphabet A is given by

Ak = {s|s ∈ A∗ and |s| = k}.

This set has |Ak| = |A|k elements. Using any partial order ≤ on A (for example
lexicographic order), it is possible to enumerate these strings by

Ak = {s1, ..., s|Ak|}.

Given two strings u, v ∈ A given by u = u1...us and v = v1...vt, (s, t ∈ N0), the
concatenation uv = u1...usv1...vt is also a string.

X ⊆ A+ is the input space of the given data: a set of non-empty strings over the
alphabet A.

17

2.3.2. Spectrum Kernel

One of the state-of-the-art methods of efficiently computing a similarity measure for
strings without using any further knowledge is the widespread Spectrum Kernel (Leslie
et al., 2002). It is based on the number of (continuous) subsequences in the two input
strings. The function φ : A+ ×A+ → N0 given by

φ(s, s′) = |{(α, β)|α, β ∈ A∗ and s = αs′β}|

counts how often s′ appears in s.

For a given p ∈ N, an alphabet A and the resulting enumerated set (enumerated

using any order) Ap = {s1, ..., s|Ap|}, the feature space is F = N|A
p|

0 and the feature
map Φp : A+ → F is given by

Φp(s) = (φ(s, s1), ..., φ(s, s|Ap|)).

The components of the vectors in the feature space are the number of times, every
possible string of the length p over the alphabet A occurs in the string s.

The p-Spectrum kernel k : A+ × A+ → R is then the dot-product of two feature
vectors

kp(s, s
′) = 〈Φp(s),Φp(s

′)〉.

The specific order of elements in Ap is not important, since the result of the kernel
based on the dot product is not influenced. An example will be given at the end of
this section.

In contrast to the dimension of the feature space |Ap| = |A|p, which grows exponen-
tially in p, the number of non-zero components of a string’s feature vector is bounded
by |s| − p+ 1: There are only this many possibilities for placing a substring of length
p in s. This property allows to efficiently compute kernel values without having to
compute Φp. Instead, it is possible to compute k(s, s′) in O(p ·max (|s|, |s′|)).

2.3.3. Distant Segments Kernel

The Spectrum kernel does not consider the position of used substrings and does only
take subsequences of a certain length into account. A recently proposed method for
handling the latter is the Distant Segment Kernel (Boisvert et al., 2008). It is, in
some sense an extension of the spectrum kernel, since it includes relative positional
information of segments in a string of symbols. Additionally, it takes substrings up
to a certain length into account. It is based on the size of the set of all substrings
of a string of length δ that begin with α and end with α′, given by the function
φ : A+ ×A+ ×A+ × N→ N0 with

φ(s, α, α′, δ) = |{ (α, α′, t, β, β′) | s = βαtα′β′,

δ = |s| − |β| − |β′|,
t, β, β′ ∈ A∗ }|.

18

Given a fixed substring length maximum δm, a fixed maximum segment length θ ∈ N
of α, α′, and if

α, α′ each take all possible string values in A+ with |α|, |α′| ≤ θ,
δ takes all possible values with 2 ≤ |α|+ |α′| ≤ δ ≤ δm,

the feature map Φδm,θ : X → F maps a string s to a feature vector, where each
component has the form

Φδm,θ(s) = (..., φ(s, α, α′, δ), ...).

The position of these components in the feature vector is, like in the Spectrum kernel,
dependent on the used partial order of all possible instances of α and α′. Any order
is convenient.

The distant segments kernel kδm,θ : X ×X → R is given by

kδm,θ(s, s
′) = 〈Φδm,θ(s),Φδm,θ(s

′)〉.

It is computed for a fixed maximum value of θ of segment sizes and a fixed maximum
value δm of substring length. The dimension of its induced feature space grows expo-
nentially in θ and δm and is non-trivial to calculate. However, it is much larger than
the dimension of the Spectrum kernel. An example will be given at the end of this
section.

The algorithm given to compute k for two given strings in (Boisvert et al., 2008)
was shown to have the complexity O(|s| · |s′| ·min(|s|, |s′|, δ)).

2.3.4. Examples and kernel parameters

Feeding two strings s = ABA and s′ = BABA into the Spectrum kernel with p = 2
gives k2(s, s′) = 3. The substring AB occurs once in each string, the substring BA
occurs once in s and twice in s′.

Using the DS-kernel with δm = θ = 2 and the same strings s, s′ gives k2,2(s, s′) = 7.
Table 2.1 shows substrings that were used for the calculation. Note that only sub-
strings which occur in s and s′ are counted. The feature vector contains an element
for each possible substring.

Using both kernels, size of the induced feature space grows exponentially as their
kernel parameter grows. Feature vectors of the Spectrum kernel only contain substrings
of length of the kernel parameter. This may be a disadvantage since for complex data,
a high dimensional feature space is needed to model all hidden dependencies. Setting
the kernel parameter to a higher value results in a high dimensional feature space.
However, as the kernel parameter grows larger, substrings of less length are not taken
into account anymore, which is a kind of information loss. In addition, it is unlikely
that long substrings appear twice in a set of strings, so feature vectors become sparse.

The DS-kernel does not suffer from this problem since it takes all substrings of
length up to the kernel parameter into account. In addition, the dimension of the

19

starts with ends with # in ABA # in BABA

A A 1 1
A B 1 1
B A 1 3
A BA 1 1
AB A 1 1

Table 2.1.: Number of occurrences of substrings of s = ABA and s′ = BABA which
start and end with a certain substring. Note that only substrings which
occur in s and s′ are stated.

DS-kernel’s feature space is much larger than the dimension of the Spectrum kernel’s
feature space. This theoretically results in a classifier that is able to model more
complex data.

20

3. Methods

The following chapter is a summary of methods that are used in this work. First a
brief description of the process that has to be performed to build a classifier is given in
section 3.1. Each part of the overall procedure is then introduced in detail: Section 3.2
describes cross-validation as main technique for measuring classifier performance and
generalization ability. Section 3.3 introduces different performance measures, namely
Accuracy, F-measure and AUC, their meaning, advantages, disadvantages and how to
use them in context of cross-validation. Since experimental variance is an important
subject for all statistically based experiments, techniques for increasing confidence of
results are introduced in section 3.4. In section 3.5 a method of how to select ap-
propriate parameters for kernel and SVM, called grid-search is described. Section 3.6
contains a faster bisection-based for searching the maximum of an unknown function,
which may, under some assumptions, be used as a replacement for grid-search. Both
techniques are analyzed in detail. Finally, in section 3.7, a measure of disorder of
datasets, the sequence based entropy is developed on the base of the Shannon-entropy.

Cross-validation is a standard technique, as the used performance measures are
so sections 3.2 and 3.3.1 do not use other resources than stated. The introduction of
ROC in section 3.3.2 is based on (Fawcett, 2003). The ideas for averaging performance
measures in section 3.3.3 come from (Forman and Scholz, 2009). Experimental variance
and how to gain confidence of results (section 3.4) is a standard mathematical subject
and the introduced techniques are commonly used. The description of parameter
selection in section 3.5 is not based on other external resources than stated. The
method to improve the introduced search techniques in section 3.6 is based on the
standard idea of bisection but does not use any further resources, neither does the
proof in appendix B. The idea of using an entropy- and sequence-based measure for the
order or disorder of datasets in section 3.7 came during discussions with the advisors
of this work.

3.1. Overview

To build an accurate classifier in the current context, first, parameters of SVM and
kernel have to be chosen. This results in a classifier. Then, the classifier has to be
evaluated. To do this, it has to be trained on input data, then it has to be tested
on data that was not used for training before. The latter comes because otherwise,
generalization ability would not be measured. Using results of the test, a performance
measure has to be calculated. Possible measures will be introduced later. With the
latter, it is possible to compare different classifiers.

21

To find a good classifier, a search for best parameters has to be performed: The
above procedure has to be repeated for various different classifiers, until an appropriate
one is found. The way, the parameters are chosen and when to stop the search depends
on the search strategy.

In the following, all parts are introduced in detail.

3.2. Cross-Validation, Stratified Cross-Validation

There is the need of testing a built classifier in order to measure its performance. If
testing is done on training data, there is a strong risk over-fitting it. Some data have
to be left out for later testing, to test generalization ability. Since the underlying
distribution of training data is unknown, it is impossible to identify a subset, which,
when left out, does not change the results. To overcome this problem, every element
of the given data is left out once in multiple tests.

The set of m training samples T = {(x1, y1), ..., (xm, ym)} is randomly partitioned
into k ≥ 2 subsets Ti (1 ≤ i ≤ k) of equal size with

⋃k
i=1 Ti = T and Ti ∩ Tj = ∅ for

1 ≤ i, j ≤ k and i 6= j. Afterwards, k classifier Ci (1 ≤ i ≤ k) are built, each based
upon

⋃k
j=1,j 6=i Tj . Each classifier Ci is tested on the remaining partition Ti, which

was left out in the training and is yet unknown to the classifier. By this procedure,
every element in the training data is used for testing once. If k = m the procedure
is called leave one out cross-validation. A widely used value is k = 101 and is used
throughout the work. In addition, note that small changes to k do not significantly
affect the results. When using a small number of partitions, too much data is used for
testing, instead for training, resulting in a bleary approximation of the data. When
using an overly large number of partitions, too much data is used for training, instead
for testing, resulting in over-fitting the data. The results of all k tests have to be
combined to gain a result for the used classifier.

When using a performance measure which depends on class-label distributions in
training data, there might be problems with randomly generated partitions. For ex-
ample, when using training data where the ratio of the class labels is strongly un-
symmetric, it might happen that there are partitions, which contain only patterns of
one class label, which leads to undefined values of some performance measures. In
(Forman and Scholz, 2009), it is demonstrated that this leads to several problems.

The random partitioning is therefore constrained. For any pair of partitions Ti, Tj
(1 ≤ i, j ≤ k), it is claimed that

||{(x, y) | (x, y) ∈ Ti ∧ y = 1}| − |{(x, y) | (x, y) ∈ Tj ∧ y = −1}|| ≤ 1.

This is called stratified cross-validation. Its use prevents any occurrences of unde-
fined performance measures. In addition, experimental variance is reduced since each

1See (Forman and Scholz, 2009; Boisvert et al., 2008; Schölkopf and Smola, 2001)

22

of the k classifiers is tested under the same conditions regarding class label distribu-
tions.

3.3. Performance Measures

To measure performance/quality of a classifier, its output on test data is evaluated.
In this work, only binary classification tasks are considered. Let the names of the two
classes be positive and negative. There are four possibilities regarding correctness of
a classifier’s output:

True positive if a sample from class positive is classified correctly,

False positive if a sample from class negative is classified wrong,

True negative if a sample from class negative is classified correctly,

False negative if a sample from class positive is classified wrong,

In the following, the abbreviations TP, FP, TN, FN are used. Also P := TP +FN
and N := TN + FP . The following measures are derived from the latter:

3.3.1. Basic Performance Measures

The Accuracy, given by
P

P +N

represents the rate of correct classifications. Accuracy is easy to read and understand
and is good for a first estimate of reliability of a classifier, but it lacks information of
the class specific performance. The following measures take this into account.

The Precision, given by
TP

TP + FP

is the rate of positive classifications that are correct. The counterpart Recall or Sen-
sitiviy, given by

TP

P

is the rate of positive elements that are classified correctly. The difference is sub-
tle but significant. There may be classifier that has a high precision but a low Re-
call/Sensitivity. The counterpart to the Sensitivity, the Specificity, given by

TN

N

is the rate of negative elements that are classified correctly.
Precision, Recall/Sensitivity and Specificity are all measures of completeness of the

classifier’s output with reference to the classes.

23

The class specific measures are independent of the class label ratio of the training
data. Using the Accuracy, an asymmetric ratio may be a problem. For example, a
classifier that always outputs the same class gains 90 percent Accuracy on test data,
which contains 90 percent labels of that class. A single scalar measure, which takes the
class label distribution into account is the so-called F1-measure or F-measure, given
by

2 · Precision ·Recall
Precision+Recall

.

It is the balanced harmonic mean of Precision and Recall. The F-Measure combines
aspects of many measures into one. It is robust to asymmetric class label ratios and
takes the class specific accuracy and completeness of a classifier into account. It is
yet undefined in some situations, namely if TP = FP = 0 (Precision undefined) or
TP = FN = 0 (Recall undefined). To prevent this, according to (Forman and Scholz,
2009), the definition is extended to equal zero in the mentioned situations.

2 · Precision ·Recall
Precision+Recall

= 2 ·
(TP
TP+FP) · (TP

TP+FN)

(TP
TP+FP) + (TP

TP+FN)
=

2 · TP
2 · TP + FP + FN

3.3.2. Receiver Operating Characteristic and Area Under the Curve

Another widely used tool to visualize classifier performance is the Receiver Operating
Characteristic (ROC) curve. ”ROC graphs are commonly used in medical decision
making, and in recent years have been increasingly adopted in the machine learning
and data mining research communities.” (Fawcett, 2003, 1). Since many researchers
use ROC based values to compare classifiers, the procedure is also applied in this work.

ROC graphs are two-dimensional graphs in which True Positive Rate (TPP) is plot-
ted on the vertical axis and False Positive Rate (FPN) is plotted in the horizontal axis.
They depict relative trade-offs between benefits (TP) and costs (FP). For drawing
ROC graphs, the underlying classifier must output a score. The graph is drawn by
successively increasing a threshold on that score and counting the number of errors,
which a classifier does when using the threshold for decision of a pattern’s class. When
using SVM, usually the term, which is substituted into the sign-function, in equation
(2.18) is used for this purpose. Another possibility would be to use probabilistic out-
put as for example described in (Platt, 1999). A basic algorithm for creating a ROC
curve can be found in (Fawcett, 2003).

Since single scalar values are easier to compare, the Area Under the Curve (AUC),
is often used to do this. As the AUC is a portion of the area of the unit square, its
value is situated in [0, 1]. The AUC of a classifier is equivalent to the probability that
the classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative instance.

Depending on the output of the score function, there might be problems when using
ROC curves and the AUC. There might be cases when a classifier, which is acutally
better than another one has a worse AUC. The sensitivity/specificity should always

24

come with the ROC curve and derived measures to prevent overemphasizing the re-
sults. There will be an example in the results section.

3.3.3. Performance Measures and Cross-Validation

There are many ways to average results of different cross-validation runs. Intermixing
these brings problems, as for example, results of different folds may be uncalibrated
or even incompatible to each other. Also, some methods of averaging lead to biased
results. This work follows the suggestions of (Forman and Scholz, 2009).

Let (TP)i, (FP)i, (FN)i, (TN)i be the number of true/false positives/negatives in
cross-validation run i (1 ≤ i ≤ k). Also let (P)i =

∑k
i=1 ((TPi) + (FNi)) and

P =
∑k

i=1 ((TPi) + (FNi)) be the numbers of positive/negative samples in run i..

The averaged F-Measure is computed by using the sum of the classifier’s answers in
all k test runs.

2 ·
∑k

i=1(TP)i

2 ·
∑k

i=1(TP)i +
∑k

i=1(FP)i +
∑k

i=1(FN)i

For the AUC, it is not possible to merge scores of the cross-validation runs, since
they are not calibrated. Instead, the averaged AUC is computed as the mean of results
of single runs. Let (AUC)i be the AUC value of cross-validation run i, the mean is
given by

1

k

k∑
i=1

(AUC)i

The Accuracy is also used for reference. It has the nice property that its value is
independent of the method (averaging or merging), which was used for calculation:∑k

i=1(TP)i +
∑k

i=1(TN)i∑k
i=1(P)i +

∑k
i=1(N)i

=
1

k
·
k∑
i=1

(TP)i + (TN)i
(P)i + (N)i

3.4. Reduction of Experimental Variance

So far, all results of the experiments are in form of single values. To supply confidence
intervals and to discuss relevance of gained results, experimental variance has to be
studied. Experimental variance in context of this work means that when an experiment
is repeated multiple times, the observed results are not equal for each repetition.
This behavior is primarily is caused by the introduced main technique for classifier
evaluation, cross-validation, which is based on random partitioning of data.

25

Normally, in a deterministic experiment, same input leads to same output. However,
due to use of cross-validation, which does random partitioning, there is a probabilistic
factor introduced. Consequently there is the problem that results may be hard to
interprete because they are too noisy (example are in the results section).

As already seen, stratified cross-validation is used to keep the ratio of class labels at
least constant in each fold. Another way of reducing variance is simply to repeat an
experiment multiple times and to average its results. There is no point in repeating
a deterministic part in an experiment, so the repetition has to take place before the
point where cross-validation and thereby randomness is introduced. Therefore, the
cross-validation procedure is repeated a certain number of times. Since underlying
data is equal for every repetition, results are comparable and the arithmetic mean of
the gained results may be used. With the number of repetitions increasing, variance
will be reduced. The size of a dataset also has an impact on variance: Small datasets
lead to a larger variance than large datasets. Therefore, the number of repetitions
should be chosen with size, available time and desired confidence in mind.

To be able to discuss relevance of results of an experiment, confidence intervals are
determined. These give a range in which, the actual value of a result is situated with
a certain probability.

To gain confidence intervals, it is important to have knowledge of the underlying
probability distribution. Since the only random part in the performed experiments is
random partitioning of data, it may be assumed that averaged results are normally
distributed, especially with the number of repetitions getting larger. According to
the central limit theorem, the average mean of n iid2 random variables is normally dis-
tributed as n goes to infinity, irrespective of the distribution of the variables. However,
to be sure, the distribution will be checked in the experiments.

Due to the computational expense of the introduced search techniques, it is un-
feasable repeating the experiments a many times in order to reduce variance. Instead,
the search is performed with an appropriate number of repetitions to eliminate noise.
Then, the resulting single classifier is evaluated with many more repetitions, which
results in very tight confidence intervals.

3.5. Parameter Selection

To build a classifier, reasonable parameters have to be selected. In this work, two
parameters are involved, namely the regularization parameter C of the SVM and the
parameter of the used string-kernel. To find the best possible parameters, the classifier,
which leads to the best performance quality has to be found. This problem can be
formalized in the following way: Assuming that a measure which is normed to [0, 1] is

2independent and identically distributed

26

used for measuring the performance of a classifier, let

f : R× N→ [0, 1]

be the function that describes the dependency between the classifier’s parameters and
its performance quality. f is unknown and the goal is to find its maximum. It is
possible to evaluate f at any point, which corresponds to building a classifier with
the given parameters and measuring its performance. This introduces computational
costs. Let the costs for evaluating f be given by a constant k ∈ N . For example, the
number of SVM classifiers that are trained to evaluate f may be used to determine
the costs.

To find the best parameters, a search has to be devised. It can be divided into
multiple nested loops, one for each parameter. This way, in the innermost loop, all
parameters are fixed except one. In the following, a standard search technique, which
is often used in SVM context, is introduced.

3.5.1. Grid-Search

In (Hsu et al., 2003), a simple search of all possible pairs of parameters, called grid-
search, is proposed. For a given interval for both parameters, all possible pairs of
parameter pairs are tried, first with a coarse grid to determine the region where the
best parameters located, and then with a finer grid to gain more insight into that
region.

The implicit assumptions made on f (which are not described in (Hsu et al., 2003))
are:

• f is “smooth” (does not oscillate fast),

• the intervals where the parameters, which lead to the maximum of f , are situated
are known beforehand.

Empirical results allow the assumption that f is smooth. There will be a discussion
in the results section. The intervals where the best parameters are situated can derived
using knowledge of the nature of the used classifier as discussed in the following.

3.5.2. Parameters to Search for

The regularization parameter C is searched in an interval similar to [2−5, 215], (taken
from (Hsu et al., 2003)). There is no point in selecting the regularization parameter
of a C-SV classifier smaller than zero. Similarly, for high values, performance will get
worse because the margin of the SVM gets smaller, resulting in worse generalization
ability. First a coarse exponential search is performed to identify the best region of the
results, e.g. 2−5, 2−4, ..., 214, 215. Then a fine exponential search is performed in that
region to sharpen the extremum, e.g. with 23 being the result of the coarse search:
22, 22.1, ..., 23.9, 24. Note that this introduces two parameters for the step width. These
will be discussed later.

27

In contrast, the kernel parameter of the used string kernels is used for substring
length, so there is no point in searching for it exponentially. Instead, it is searched
for linearly. Since it is a natural number, the smallest possible change, which is one,
may be used as step width. A reasonable interval is e.g. [1,min(35, L)], where L
is the minimum length of a sequence in the underlying dataset. First, substrings of
zero length do not exist in practice. Second, the probability that a substring of a
given length occurs in an amino-acid sequence converges to zero as the length of this
substring increases to infinity. Consequently, in context of amino-acid sequences, it
is unlikely that long subsequences appear twice, but more likely that subsequences
of small or medium size appear multiple times, since they may form “motifs” whose
biochemical function is needed in various places.

3.5.3. Different Performance Measures

A remaining question is: Which performance measure is used to compare classifiers
and to find an optimum? In (Hsu et al., 2003), the Accuracy is suggested. As already
mentioned in section 3.3.1, there might be problems using the Accuracy on asymmetric
training sets. Therefore, along with the Accuracy, a number of different performance
measures will also be used to find best parameters, namely: Accuracy, AUC and F-
measure. The results will be compared. Since all introduced performance measures
are normed to [0, 1], their choice does not affect the content of this section.

3.5.4. Grid-Search: Parameters, Performance and Costs

Along knowledge of intervals, where the search has be performed, the step width of
the coarse and the fine part of the search are needed as parameters. These parameters
affect the accuracy (not: Accuracy) of the search: The smaller they are, the more
accurate the search is. If the values are too large, maxima may be “overseen”. If they
are too small, the costs will explode. The grid-search suffers from multiple problems:

• It is not guaranteed to find the maximum of the function f . The problem is that
there might be maxima, which are hidden between two evaluations of f , while
the evaluated values are small. Figure 3.1 depicts this problem. The assumption
that f is smooth decreases the chances for these kind of situations. In practice,
the step width is set relatively small to avoid such behavior. However, this leads
to the second problem, as described in the following.

• Since the step width of the search is constant, and though has to be set relatively
small to have an appropriate resolution in neighborhood of a maximum, many
effort is put into evaluation in regions of the function that do not contribute
anything to the final result. That’s why the computational costs of this kind of
search technique are huge.

The number of model evaluations grows exponentially with the number of param-
eters. In the given situation, there fortunately were only two. When using string

28

coarse step width

fine step width

returned maximum

actual maximum

Figure 3.1.: Illustration of a situation where the grid-search fails. Because the step
width is too large, the maximum is “overseen” and even worse, a point is
returned, which is far away from the actual maximum.

kernels, the computation of the kernel matrix, which has to be done for each kernel
parameter, is quite time consuming, especially when using large datasets containing
long sequences.

Assuming that the area, in which the fine search takes place has a size of 2α, the costs
for one evaluation of f given by k, given an interval]a, b[and step width parameters
α ∈ R for coarse step and β ∈ R for fine step, the costs for the grid-search for one
search parameter are given by

Kgrid =

(
b− a
α

+ 1

)
· k +

(
2 · α
β

+ 1

)
· k =

(
b− a
α

+
2 · α
β

+ 2

)
· k. (3.1)

This number is multiplicated with itself for every additional parameter, resulting
in K2

grid for two parameters, K3
grid for three, and so on. Due to this exponential cost

raise, the grid-search is unfeasible for a larger number of parameters. However, note
that the costs are fixed, so the procedure is guaranteed to terminate.

An advantage is that the individual parameter searches are independent, therefore
the procedure may be parallelized.
Under some additional assumptions, the search may be accelerated.

29

3.6. Bisection Based Method for Searching for Regularization
Parameters

3.6.1. Motivation: Costs and Accuracy

As it will be described in the results parts, search-curves for regularization parameters
are nearly continuous and only have one maximum. There are theoretical reasons for
this kind of behavior. The nature of the regularization parameter of the C-SV classi-
fier explains why only one maximum is likely to appear: The parameter is a control
variable for the classical trade-off between memorizing data and generalization ability.
It penalizes vectors in the feature space that are close to the separating hyperplane. A
low value results in more margin errors and a weak performance measure, a high value
results in a hyperplane that fits data too close, introducing more errors on unseen data.
There exists an extremum, where the trade-off is optimal. Additionally, subtle changes
of the parameter lead to subtle changes of the classifier performance, which explains
that the search-curves are nearly continuous. Examples are in the result section.

With these curves in mind, an advanced approach of finding the best parameter can
be thought of.

3.6.2. Basic Idea: Bisection

The task of finding the maximum of f by only using single evaluations can be extended
to find the maximum of f by only using single evaluations such that the sum of all
costs (number of evaluations of f) is minimal. With the additional information that
there is only one local maximum, the naive grid-search approach of evaluating f for
more or less all possible parameters, may be improved concerning costs. Furthermore,
an approach for finding the maximum, that converges to the actual maximum can be
formulated, so finding a maximum is possible with any desired accuracy while avoiding
the evaluation of f for many useless points in the search interval.

In the following, for simplicity, problem and technique are described for searching
the maximum of a one-dimensional function

f : R→ R,

which is unknown and to be maximized by only using single evaluations of it, while
keeping the sum of evaluations small. This approach may easily be applied to search
for the regularization parameter C of a SVM, and also to a search for other parame-
ters, as long as the following assumptions are met:

• f is continuous,

• f has only one maximum in the search interval]a, b[and

• an interval]a, b[where the global maximum is situated is known (may be arbi-
trary large).

30

a

a +3step = ba + step

a + 2step

n = 3

Figure 3.2.: Illustration how the sub-intervals are built.

Since the function f is unknown and therefore the derivatives are also unknown,
the Newton method or any gradient based methods for finding extreme points are not
usable.

The method, which is implemented is based on bisection for finding a function’s
root. The basic idea of the approach, which will be introduced, is the following: If
there are found three parameters x, y, z with x < y < z and

f(x) < f(y) > f(z),

the only maximum is definitely located in]x, z[. An algorithm may work as the
following:

1. Split the interval where the maximum is situated into three subintervals of equal
size (see figure 3.2).

2. Evaluate f at all four interval borders (there is one more interval border than
there are intervals, see figure 3.2).

3. If, among these results, there are three values x, y, z with x < y < z and f(x) <
f(y) > f(z), then the maximum lies in]x, z[. Use this interval and start from 1.

This way, the interval where the maximum is situated becomes smaller on every
iteration. The shrinking factor is 2

3 (meaning that the size of the interval is reduced
by 1

3 .) There might be situations, where step three does not lead to any refinement. In
this case, the interval is split into a larger number of equal values and the procedure is
started from step one. The shrinking factor of the search interval then becomes larger,
but, at costs of a larger number of evaluations of f .

3.6.3. Algorithm

The implementation is a little more complicated. Algorithm 3.1 shows the basic pro-
cedure. Inputs are: the search interval]a, b[to start with, the termination criterion
tolerance (will be explained in the following) and the unknown function f , which has
to be maximized. n is the number sub-intervals, which are used during one iteration.
It is initialized with n = 3 in line 1. With this number, step = b−a

n is calculated in
line 7 and represents the size of each sub-interval. Note that the number of evaluation

31

points is n + 1 (because a + 0 · step also has to be evaluated). The i-th evaluation
point (0 ≤ i ≤ n) is given by

a+ i · step.

The rightmost evaluation point is given by

a+ n · step = a+ n · b− a
n

= b.

Figure 3.2 depicts how the intervals are built.

The for-loop, which starts in line 8 works in the following way: A “sliding window”,
which contains three sequential evaluation points is moved from the left-most position
to the right-most position, i.e. left-most:

x = a,

y = a+ step,

z = a+ 2 · step,

rightmost:

x = a+ (n− 2) · step,

y = a+ (n− 1) · step,

z = a+ (n) · step = b.

The resulting three function values f(x), f(y), f(z) are evaluated and saved on each
position (line 12). If among these window positions, one is found with f(x) < f(y) >
f(z), the search interval borders]a, b[are set to]x, z[and the procedure is started
from the beginning (line 13 ff.):

There might be situations where in all window positions, no refinement is found.
In this case, the number of subintervals n is increased by one. This is done via the
boolean flag variable. It is set to true in the beginning of each iteration in line 6.
If a refinement is found, it is set to false in line 17. If, after the for-loop, it holds
flag = true, no refinement was found and n will be increased by one. Note that n is
set to three again when a refinement is found in line 16.

The main loop (line 2 to 24) can only be exited in line 3, which contains the termi-
nation criterion of the algorithm: If the search interval is smaller than the provided
tolerance parameter, its center is returned.

A proof of the total correctness of algorithm 3.1 is rather technical and can be found
in appendix B.

To clarify algorithm 3.1, see the following examples. For simplicity, only parts,
which are needed for understanding the algorithm are depicted. Vertical lines repre-
sent sub-interval borders, outer vertical lines represent search interval borders. Letters
below these line represent the current search window position. If a letter is framed,
its corresponding function value is the largest of the three evaluated ones in search

32

Algorithm 3.1 Algorithm that outputs a value that is close to argmax f(x) with any
accuracy.

Inputs are:

• a, b ∈ R, with argmax f(x) ∈]a, b[,

• tolerance ∈ R,

• f : R→ R.

Output is:

• o ∈ R with | argmax f(x)− o| < tolerance.

1: n← 3

2: loop
3: if b− a < tolerance then
4: return a+ b−a

2
5: end if

6: flag ← TRUE
7: step← b−a

n

8: for i = 0 to (n− 2) do
9: x← a+ (i) · step

10: y ← a+ (i+ 1) · step
11: z ← a+ (i+ 2) · step
12: save evaluations of f(x), f(y) and f(z)

13: if f(x) < f(y) and f(y) > f(z) then
14: a← x
15: b← z
16: n← 3
17: flag ← false
18: break for loop
19: end if
20: end for

21: if flag then
22: n← n+ 1
23: end if
24: end loop

33

window. Circles show, which points are evaluated.

Figure 3.3 shows a simple example of how the described algorithm works. In this
example, the number of subintervals stays n = 3. Note how the step variable is
decreased every time, a maximum is found. Also note that the reduction of the search
interval becomes smaller on every refinement.

Figure 3.4 shows a more complex example. In step 3.4b, all positions of the search
window did not lead to a refinement, so the number of sub-intervals is increased by
one.

3.6.4. Parameters, Performance and Costs

With its assumptions met, the described algorithm outperforms the classical approach
of coarse and fine grid-search in various ways

• The number of evaluations of f is less. Especially in regions far from the maxi-
mum. The convergence speed of the described method is numerically very large
in the first iterations of the algorithm. It gets slower, as the search interval be-
comes smaller, so in practice the tolerance parameter has to be set to a value,
which is not overly small.

• When the step width parameters of the grid-search are overly large, it may
“oversee” the maximum (see figure 3.1) in contrast to the introduced method,
where the position of the maximum is always guaranteed to be in the current
search interval. The step parameters of the grid-search have to be set a-priori
to perform well, while the tolerance parameter of the introduced method is just
a measure how accurate the result is at minimum.

The costs of the described method are depending on the function that is maximized.
Assuming three sub-intervals are sufficient to find a refinement in every iteration (n = 3
throughout the algorithm), the search interval’s size is multiplicated with 2

3 in each
iteration. Given the tolerance parameter, the algorithm terminates after x iterations
if

(b− a) ·
(

2

3

)x
≤ tolerance⇒ x ≥ dlog 2

3

(
tolerance

b− a

)
e.

In every iteration, the costs are at most 4 · k (based on the above assumption n = 3),
where k are the costs for one evaluation of f . The overall costs then are bounded from
above by

Kbisection ≤ 4 · dlog 2
3

(
tolerance

b− a

)
e · k,

which, in comparison to the grid-search, is a decrease of the underlying complexity
class, namely from linear to logarithmic.

Example: Assuming a search interval is given by]0, 100[, grid-search parameters
are given by coarse = 1 and fine = 0.1 and the parameter tolerance = fine = 0.1 is

34

x y z

step

(a) (n=3) Start. Evaluation leads to refinement.
Search is continued in x,z.

x y z

step

(b) (n=3) Evaluation does not lead to refinement
because point in the middle is not higher than
outer ones. Search window is moved one step
to the right.

x y z

step

(c) (n=3) Evaluation leads to refinement. Search
is continued in the interval x,z

x y z

step

(d) (n=3) Evaluation leads to refinement. Search
is continued in the interval x,z

x y z

step

(e) (n=3) Evaluation leads to refinement. Search
is continued in the interval x,z

x y z

step

(f) (n=3) Evaluation leads to refinement. Search
is continued in the interval x,z

Figure 3.3.: Illustration how the described method works on a simple example. Vertical
lines represent sub-interval borders, outer vertical lines represent search
interval borders. Circles show, which points are evaluated. When of three
evaluated points, the middle one is higher than the outer ones, the search
is continued in that interval. Note that there is no need to increase the
number of sub-intervals in this example, since three are sufficient.

35

x y z

step

(a) (n=3) Start. Evaluation does not lead to
refinement. Search positions x, y, z are
moved one step to the right.

x y z

step

(b) (n=3) Evaluation does not lead to refine-
ment. At this point, all positions did not
lead to a refinement, so the number of sub-
intervals is increased by one.

x y z

step

(c) (n=4) Start from left again. Evaluation
does not lead to refinement. Search po-
sitions x, y, z are moved one step to the
right.

x y z

step

(d) (n=4) Evaluation does not lead to refine-
ment. Search positions x, y, z are moved
one step to the right.

x y z

step

(e) (n=4) Evaluation of leads to refinement.
Search is continued in the interval x,z.

x y z

step

(f) (n=3, skipped one step) Evaluation of
leads to refinement. Search is continued
in the interval x,z.

Figure 3.4.: Illustration how the described method works on a more complex example.
The outer vertical lines represent the search interval, the circles show,
which points are evaluated. When of three evaluated points, the middle
one is higher than the outer ones, the search is continued in that interval.
This example also depicts how the search resolution becomes finer when
no refinement of the search interval can be found.

36

given to the described method. According to equation 3.1, the costs for the grid-search
then are

Kgrid =

(
100− 0

1
+

2 · 1
0.1

+ 2

)
· k = 122 · k.

In contrast, while reaching at minimum same accuracy as the grid-search, the costs of
the introduced method are bounded by

Kbisection ≤ 4 · dlog 2
3

(
0.1

100− 0

)
e · k = 72 · k.

In practice, not every iteration leads to the worst case of four evaluations, so the num-
ber is likely to be smaller. Note that this example is based on the assumption that
it is never necessary to increase the number of sub-intervals in the described method
(see above for details). However, when the number of sub-intervals is increased, the
shrinking factor of the search interval becomes larger, resulting in less necessary itera-
tions, and therefore damps the costs for evaluating more points of the to be maximized
function.

Some improvements concerning the number of evaluations can be reached when the
evaluated values of f are saved during the algorithm, to avoid double evaluation of
certain values. Additionally, when no refinement could be found using a certain step
size, values of larger distance, which were yet evaluated (presuming they were saved),
could be used to find a refinement before increasing the number of sub-intervals. Both
ideas do further decrease the costs, but do not change the logarithmic complexity.

3.6.5. Problems: Continuity & Uncertainty

The described bisection method for finding a function’s maximum has one major point
of weakness: The assumption that the underlying function is continuous. If f is not
continuous, the described method is not guaranteed to work. It is not shown in this
work that f is continuous and therefore, no guarantees regarding the behavior of the
described method can be made.

However, empirical results show that f is at least nearly continuous (these will follow
in the results section). In practice, this is sufficient. If the amount of “discontinuity” is
not overly large (i.e. f has no major “jumps”), the described method still works up to
a certain point. It then can be seen as a kind of heuristic. Experimental results lead to
usable results using the approach and are described in the results section. Additionally,
the naive grid-search technique, which is widely used technique for parameter selection
also works worse when the underlying function is not continuous.

It would be interesting to examine the actual function f regarding continuity, how-
ever, it is out of scope of this work to do this and therefore only mentioned in the last
section of this work.

In practice, the search curves sometimes contain small local maxima. These are for
example caused by noise or experimental variance (see section 3.4). For the introduced

37

bisection based algorithm, this is a problem because it is based on the assumption that
there exists only one maximum and though, it may “turn to the wrong direction”. In
the following, a method of adding robustness against these weakly distinctive maxima
is described.

Formally, from now on, the evaluation of f is not directly possible anymore. Instead,
it is only possible to evaluate another function f̃ : R→ R, given by

f̃(x) = f(x) + n,

where n ∈ [−ε, ε] ⊂ R is a random number bounded by ε ∈ R. This number represents
uncertainty in the evaluation of f .

The following changes are made to algorithm 3.1:

• ε is provided as input parameter,

• each usage of f is replaced by f̃ and

• the maximum check in line 13, namely (f is already replaced by f̃)

if f̃(x) > f̃(y) and f̃(y) > f̃(z) then

is replaced by

if f̃(x) + ε > f̃(y)− ε and f̃(y)− ε > f̃(z) + ε then

This way, only a refinement is found, when of three sub-interval borders x, y, z with
x > y > z, the middle one leads to a function value, which is at least 2ε larger than
the outer ones, namely f ′(x) + ε < f ′(y) − ε > f ′(z) + ε. Since the latter implies
f(x) < f(y) > f(z), any output of the modified algorithm is still guaranteed to be
correct (according to the proof in appendix B). The advantage of this modification is
that maxima, which are smaller than 2ε are ignored by the algorithm. This leads to
a much more robust search. Figure 3.5 shows an example. Even multiple maxima are
no problem, if they are small, so the requirements of the modified algorithm are less
restricted than without the modification.

Despite the nice property of adding robustness against maxima, which are smaller
than 2ε, the modification snatches the algorithm’s guaranteed termination. It does
not terminate when

tolerance < b∗ − a∗,

where b∗, a∗ are the closest values to m = argmax f(x), with the property

f(a∗) + ε = f(b∗) + ε = f(m)− ε.

Figure 3.6 depicts the smallest possible search interval for a certain uncertainty bound.
Unfortunately, b∗ − a∗ is unknown.

38

However, in practice, the modification may still be of value. When the uncertainty
bound ε is set to an appropriate small value in contrast to the parameter tolerance, the
modified algorithm is at least likely to terminate. When is does terminate, its output is
guaranteed to be robust against maxima smaller than 2ε, which is a useful statement.
Non-termination may be avoided by adding a maximum number of iterations and
returning the maximum value, which was found up to this moment. Setting ε = 0 lets
the modificated algorithm behave equivalent to the original one.

Further modification could also restore the total correctness, if the algorithm is
modified in such way that the search interval converges to the smallest possible one.

3.6.6. Conclusion

The described bisection based algorithm outperforms the classical naive grid-search
regarding costs, which are reduced from linear to logarithmic, and accuracy, since
the grid-search may “oversee” maxima, in contrast to the introduced method, which
outputs the maximum with any desired accuracy. These properties come at the cost of
requiring continuity of the underlying function. This may not be proven in the scope
of this work, however, approximate continuity is sufficient in practice (see 3.6.5)

To handle small local maxima, which are for example caused by noise or exper-
imental variance, the introduced modification (see 3.6.5) to algorithm 3.1 makes it
robust against maxima, which are smaller than a certain uncertainty bound, which
has to be provided as parameter. This modification snatches the algorithm’s guar-
anteed termination, but this may be handled by wise parameter selection and/or a
“maximum number of iterations” restriction. However, a further modification could
eventually restore the total correctness if the search interval would converge to the
smallest possible one.

3.7. Entropy

3.7.1. Motivation: Disorder of Data

When evaluating a classification technique, it is always of interest to spot both datasets,
which lead to good and to weak results and to compare their attributes. If a correlation
is found between attributes of datasets and results regarding classifier performance, it
may be used to predict the applicability of a classifier to certain types of data. Since
kernel choice is crucial for SVM-classification, it would be nice to find attributes of
datasets that may be used to give a coarse prediction, how well a SVM with a certain
kernel will work on certain data.

A straightforward attribute of a dataset is its order or disorder. It seems intuitive
that a dataset, which contains homogeneous data is harder to classify than a divergent
dataset. As described in section 2.3, kernels do calculate a pairwise similarity measure
of data, so a homogeneous dataset (from the kernel’s view) leads to feature vectors,
which are distributed closely in the feature space. A divergent dataset leads to feature

39

x y z

uncertainty

(a) (n=3) Although the middle point is lo-
cated higher than the outer ones, no re-
finement is found, since its lower bound of
uncertainty is not higher than the upper
bounds of uncertainty of the outer points.
Search window is moved one step to the
right.

x y z

uncertainty

(b) (n=3) Evaluation does not lead to refine-
ment. At this point, all positions did not
lead to a refinement, so the number of sub-
intervals is increased by one.

x y z

uncertainty

(c) (n=4, skipped two steps) Middle point is
located higher than the outer ones. Since
its lower bound of uncertainty is higher
than the upper bounds of uncertainty of
the outer points, a refinement is found.

x y z

uncertainty

(d) (n=3, skipped one step) Same as before.

x y z

uncertainty

(e) (n=3, skipped one step) Same as before.
Note that the distance of the mentioned
borders is not very large here.

x y z

uncertainty

(f) (n=3, skipped one step) Although the mid-
dle point is located higher than the outer
ones, no refinement is found, since its lower
bound of uncertainty is not higher than the
upper bound of uncertainty of the outer
points.

Figure 3.5.: An example where the introduced modification of algorithm 3.1 prevents
it from ”taking a wrong way” to a small local maximum, which may be
caused by noise or experimental variance. The blue area depicts the dis-
tance between the lower uncertainty bound of the highest point to the
upper uncertainty bound of the outer points. The red area depicts the
amount of additional distance that would be needed between the uncer-
tainty bounds to lead to a refinement.40

uncertainty

ma* b*

Figure 3.6.: The closest, the search interval borders can get to the actual maximum
when the modificated algorithm is used. It is not possible for the algorithm
to terminate, when the search interval borders are moved into the red
area. In practice, the tolerance parameter has to be set at minimum to
the width of the red area. Otherwise the algorithm does not terminate.
Unfortunately, this width is unknown.

vectors, which are distributed with more distance to each other.

One method of comparing order or disorder of datasets, which contain sequence
based data, as in the setting of this work, is the normed (Shannon)-entropy. It is
defined as the expected value of self information of a discrete random variable with
possible outcomes {x1, ..., xn},

−
n∑
i=1

p(xi) logn (p(xi)) ≤ 1, (3.2)

where p(xi) denotes the probability of xi being the output of the random variable. The
latter is normally a source of single characters. The probability of one such character
is replaced by the frequency of its appearance in the dataset.

3.7.2. Sequence Based Entropy

This single character approach is not suitable for handling amino-acids. For exam-
ple, the sequences AABBBB and BABABB have the same entropy (same number
of individual amino-acids), but a complete different biological meaning. Therefore,
a sequence of amino-acids is seen as one outcome of the random variable. Given a
(training) set of m amino-acid sequences T = {s1, ..., sm} over the alphabet A and a
fixed length l with 1 ≤ l ≤ min{|s1|, ..., |sm|}, the set S of all subsequences of length l
in T is given by

S =

m⋃
i=1

{s | si = αsβ and |s| = l α, β ∈ A∗}. (3.3)

41

Example: Given the set T = {AAA,ABC,CBAA}, the set of all subsequences of
length l in T is given by

S = {A,B,C} for l = 1,
S = {AA,AB,BC,CB,BA} for l = 2,
S = {AAA,ABC,CBA,BAA} for l = 3,
S = {CBAA} for l = 4.

The frequency of appearance of one such subsequence s in T can be calculated by
dividing the number of occurrences of s in T by the number of possible occurrences of
a string of length |s| in T :

Fs,T =

∑m
i=1 |{(α, β) | si = αsβ α, β ∈ A∗}|∑m

i=1 |si| − |s|+ 1
. (3.4)

Example: Given the set T = {AAA,ABC,CBAA} and s = A, the frequency of s
in T is given by (ε is the empty string)

Fs,T =
|{(AA, ε), (A,A), (ε, A)}|+ |{(ε, BC)}|+ |{(CB,A), (CBA, ε)}|

3 + 3 + 4
=

3

5
.

For s = AA its frequency in T is given by

Fs,T =
|{(ε, A), (A, ε)}|+ 0 + |{(CB, ε)}|

2 + 2 + 3
=

3

7
.

By taking the elements of the set S, given by equation (3.3), as possible outcomes in
the entropy term (3.2) and by replacing the probability of appearance by the frequency
given by equation (3.4), it is possible to calculate the sequence based entropy of a
dataset for a fixed subsequence length l.

Example: Given the set T = {AAA,ABC,CBAA} and l = 2, the set of all
subsequences of length l = 2 is given by

S = {AA,AB,BC,CB,BA}.

The frequencies of its elements are:

FAA,T =
3

7
, FAB,T =

1

7
, FBC,T =

1

7
, FCB,T =

1

7
, FBA,T =

1

7

The summands of the sequence based entropy are:

−FAA,T · log5 (FAA,T) = −3

7
· log5

(
3

7

)
≈ 0.215.

Since the frequency of the remaining four summands is equal, their value is equally
given by

−1

7
· log5

(
1

7

)
≈ 0.173

42

AABBBB BABABB

l = 1 0.918 0.918
l = 2 0.864 0.960

Table 3.1.: The sequence based entropy takes individual substring “motifs” into ac-
count and though is able to state differences between datasets which con-
tain the same number of individual letters. The Shannon-entropy (l = 1)
is the same for both strings. However, AABBBB seems intuitively “more
ordered” than BABABB. When using l = 2, this condenses in the se-
quence based entropy, which is lower for AABBBB, meaning that through
this view, AABBBB contains more redundancy than BABABB.

Summing up results in 0.906, which is close to the maximum possible value of one,
since T does not contain much redundancy.

Table 3.1 compares the sequence based entropy to the Shannon-entropy for the
two sequences from the example in the beginning of this section, namely AABBBB
and BABABB. The different biological meaning of the two sequences is taken into
account by the sequence based entropy in contrast to original one. Note that the
Shannon-entropy is a special case of the sequence based entropy with l = 1.

3.7.3. Properties

The sequence based entropy has some interesting properties when it is applied to sets
of amino-acid sequences:

• Its value converges to one as l goes to min{|s1|, ..., |sm|}. The probability of
appearance of a subsequence in a set of amino-acids sequences goes to zero, as
the length of that sequence grows larger. When l is large enough, all sequences
only appear once, resulting in a maximum sequence based entropy. The dataset
is at maximum disorder from this perspective.

• Its value is equal to the Shannon-entropy when l = 1.

• From a biological perspective, not single amino-acids are responsible for the func-
tion of a sequence, but subsequence of a certain length, which form “motifs”.
These motifs may share single characters, but have a different meaning. Conse-
quently, the sequence based entropy will decrease when l is increased from one.
When l reaches a certain value, the number of subsequences of that length in the
dataset will be at a maximum level. From this perspective, the redundancy is
maximal, so the sequence based entropy is minimal. In- or decreasing l will re-
sult in less redundancy and a higher sequence based entropy, as described above.
Figure 3.7 shows an example of this behavior.

The minimum of all sequence based entropies over all possible sequence lengths is
used as a single scalar value of order/disorder of a dataset. This value is used to

43

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

5 10 15 20 25 30 35

0.
75

0.
80

0.
85

0.
90

0.
95

Sequence Based Entropy

S
eq

ue
nc

e
Le

ng
th

Figure 3.7.: Sequence based Entropy for different subsequence lengths. This dataset
has maximum redundancy when using subsequences of length l = 5. There
is a minimum at this point and its value, 0.72, used to compare this
dataset.

44

compare the datasets and their corresponding results as mentioned in the motivation
section 3.7.1.

45

4. Experimental Results

In the following chapter, all performed experiments and gained results are described.
First, in section 4.1, overall leitmotifs of performed experiments and attributes of se-
lected data are described. Then, in section 4.2, results regarding selection of a perfor-
mance measure for parameter search are given. Afterwards, in section 4.3, introduced
methods for experimental variance reduction are verified. Section 4.4 continues with a
collection of results, which concern the search for best parameters. Results regarding
regularization and kernel parameter and their connections to the underlying feature
space are described. Section 4.5 contains a description, comparison and interpretation
of results of the overall approach of finding the best classifier for a dataset. Different
kernels and datasets are compared. In addition, attributes of datasets are examined
for correlations with their corresponding results. Finally, in section 4.6, the introduced
bisection based technique for maximizing an unknown function is applied to the search
for best regularization parameters. A comparison is made with the naive grid-search,
regarding computational costs and differences/similarities of results.

All experiments were performed with the exclusive use of the software, which is
described in appendix A. All interpretations and results are solely based on these ex-
periments.

Since this chapter is quite large, every section, which contains an experiment, starts
with a brief motivation of the latter and closes with a short summary of gained results.

Also note that all plots concerning regularization parameters have an exponentially
scaled horizontal axis, since the exponent to the base of two is varied. Plots concern-
ing kernel parameters have a linearly scaled horizontal axis. The vertical axis of all
plots (except a single QQ-Plot, but more in this later) represents a classifier’s reached
performance measure.

4.1. Experiment Description

4.1.1. Preliminaries: Performance Measures and Variance

Before starting with experiments, a performance measure, which will be used for pa-
rameter search has to be selected from the introduced ones: Accuracy, AUC or F-
Measure. Therefore, these are tested for applicability by assaying and comparing
their individual results. As described in section 3.4, experiments which involve cross-
validation suffer from experimental variance. The introduced methods of its reduction
are tested: Results gained with multiple evaluation runs are checked for the presumed

47

normal distribution, which would allow to use their arithmetic mean without the risk
of information loss. In addition, results, which are gained without repetitions are
compared to results, which were gained with the use of repetitions.

4.1.2. Main Experiment: Search for Best Parameters

When these subtasks are accomplished, the main experiment may begin, which is to
search for classifier parameters, which lead to high quality results. Namely, a search
is performed for kernel parameter and the C-SV classifier’s margin regularization pa-
rameter. This procedure is repeated for all datasets, which will be introduced later in
this section, and both introduced kernels.

The search for the best regularization parameter of a C-SV classifier is performed
with a fixed kernel parameter. The latter successively takes all values in a search
interval as described in section 3.5.2. The regularization parameter is searched in an
interval as described in section 3.5.2. In the first step, the search is performed with
the naive grid-search technique as described in section 3.5.1. This way, since nearly
all parameters in the search interval are tried, a coarse plot of the function, which
describes dependencies between regularization parameter and classifier performance
can be visualized. These plots are examined regarding connections of their shape
to underlying classifier parameters. In addition, since grid-search depends on the
assumption that underlying functions are smooth, function plots are used to verify
this attribute.

The bisection based search technique, as described in section 3.6 needs continuity
to work. It is not possible to derive such an attribute from function plots, but the
latter are used to check, if underlying functions are nearly continuous. If they are
nearly continuous, the introduced, faster method is also used for determining best
regularization parameters and the results are compared to the ones, which were found
by the classical grid-search. In addition, the computational costs of both techniques
are compared to verify the cost reduction, which was suggested in section 3.6.4.

As mentioned above, after finding the best regularization parameter for a fixed ker-
nel parameter, the kernel parameter is varied according to section 3.5.2. This results
in plots, which depict dependencies between kernel parameter and classifier perfor-
mance. The underlying functions are definitely not continuous, since their parameter
is a natural number. In addition, different kernel parameters induce different feature
spaces, so subtle changes of the kernel parameter may drastically change the results.
Still, an examination of the plots is made. It is for example expected that large ker-
nel parameters for the Spectrum kernel lead to weak results, as suggested in section
2.3.4. Additionally, since kernel parameters of string kernels are responsible for the
dimension of the feature space, the results are examined with the latter in mind.

4.1.3. Different Data and Kernels

All of the above described experiments and examination emphases are performed with
using both, the Spectrum- and the DS-Kernel. Their individual results are compared.

48

A B C D E F

#Positives 205 43 648 179 368 309
#Negatives 1151 112 661 82 387 319
#Total 1356 155 1309 261 755 628
#Positives
#Negatives 0.18 0.38 0.98 2.18 0.95 0.97

Mean length 34 20 232 160 99 240
Length deviation 0.6 0.4 52.0 42.8 1.2 5.6
Min. length 32 19 145 110 99 141
Max. length 38 21 360 462 107 249

Entropy minimum 0.70 0.71 0.96 0.94 0.72 0.73
Used length 3 4 2 3 5 7

Table 4.1.: Attributes of used datasets. For a more detailed view on the distribution
of the sequence lengths, see histograms in appendix D. Entropy curves are
in appendix E.

The expectation is that the DS-kernel outperforms the Spectrum kernel, according to
(Boisvert et al., 2008).

In addition, all experiments are applied to a number of different datasets. These are
chosen in such way that a broad spectrum of problems, which are related to classifica-
tion in bioinformatics, is covered. Results of different datasets are compared regarding
their quality, underlying classifier parameters and number of needed support vectors.
In addition, attributes of datasets are compared to results that they lead to. At-
tributes include for example the sequence based entropy as described in section 3.7.
The selected datasets are described in the following section.

Table 4.1 shows numerical properties of the selected datasets. The minimum of the
sequence based entropy and the used sequence length for calculating it is taken from the
curves in appendix E. In the following, the datasets are described briefly. Asymmetric
in this context means an asymmetric class label ratio, i.e. much more positives than
negatives. Lengths are referred to with terms like “small”, “medium” or “large”.
The exact analogies can be found in histograms of sequence length distributions in
appendix D.

Dataset A Strongly asymmetric, large size dataset of short sequences that labels a the
co-receptor usage of HI viruses, which can be used to classify them as described
in (Boisvert et al., 2008).

Dataset B A small asymmetric dataset of very short sequences which describe HI
viruses, which are or are not resistant to a drug called Bevirimat. Described in
(Heider et al., 2010).

Dataset C Large, nearly perfect symmetric dataset, which labels the positive or neg-
ative membership of its elements to a protein class called small GTPase. De-

49

scribed in (Heider et al., 2009). This dataset is very divergent due to the large
variety of GTPases. The individual sequences are very long and complex.

Dataset D Protein super-families taken from Interpro1. The positive set consists of
globins2, the negative set consists of calycines3. Since these are super-families of
proteins, they contain a lot of different sequences. Globins have an all-alpha-fold,
calycines an all-beta-fold meaning that the three-dimensional structure differs a
lot.

Dataset E Nearly symmetric dataset, which labels the resistance of HI viruses to a
drug called RTV. Described in (Rhee et al., 2006). Medium sequence lengths.

Dataset F Nearly symmetric dataset, which labels the resistance of HI viruses to a
drug called DDI. This one consists of much longer sequences. Described in (Rhee
et al., 2006).

4.2. Different Performance Measures

To decide, which performance measure to use for parameter search, all three introduced
measures, namely Accuracy, AUC and F-measure, are compared regarding their appli-
cability for classifier comparison. Therefore, parameter search is performed using all
of them and then results are examined to derive the measure, which is most practical
for classifier comparison.

4.2.1. AUC

The AUC is not suitable for comparing classifiers when no other information is pro-
vided. There are cases when maximizing the AUC leads to parameters, whose resulting
classifier is worse than other classifiers on same data. As supposed in section 3.3.2,
classifiers with a good AUC may still have a low Specificity, resulting in a lot of sam-
ples classified FP. Consequently, comparing classifiers by only using their AUC is not
a wise strategy. Table 4.2 shows an example of the described problem. The classifier
with maximized AUC tends to label all examples positive, resulting in zero FN and
thereby a maximum Sensitivity, but a lot FP and thereby a low Specificity. The other
classifier does much less errors, even though its Sensitivity is smaller. F-Measure and
Accuracy also differ significantly.

4.2.2. Accuracy versus F-measure

As mentioned in section 3.3.1, there might be problems with asymmetric datasets
when using Accuracy to compare classifiers. However, in the performed experiments,
this was not the case. Both, Accuracy and F-Measure led to results, which were

1http://www.ebi.ac.uk/interpro
2IPR009050 with known structure
3IPR011038 with known structure

50

http://www.ebi.ac.uk/interpro/
http://www.ebi.ac.uk/interpro/IEntry?ac=IPR009050
http://www.ebi.ac.uk/interpro/IEntry?ac=IPR011038

AUC maximized A better result

Regularization parameter 212 = 4096 20.5 =
√

2 = 1.41

Kernel parameter 5 2

AUC 0.9976, [0.9975, 0.9977] 0.9938, [0.9937, 0.9939]

Specificity 0.5570 0.9718

Sensitivity 1 0.9668

F-Measure 0.9079 0.9767

Accuracy 0.8608 0.9683

Table 4.2.: Maximizing the AUC sometimes sometimes leads to non-optimal results.
The AUC of the left example is larger than the AUC of the right one, even
though the right classifier is of better quality. Example of dataset D with
Spectrum kernel, 500 runs. For the AUC, the 95-% confidence interval is
given. Note that the borders do not touch each other and consequently it
is unlikely that the AUC difference is caused by noise.

not significantly different. However, the problem is not likely to appear, when the
classifiers are of good quality and do little errors, as the case in this work.

Still, there is a difference: The range of results of each tested regularization param-
eter differs. The F-measure, which is much more sensible to errors than the Accuracy,
quickly becomes zero when the classifier is not of good quality. This already happens
if one class is completely classified wrong, in contrast to the Accuracy, which then still
takes a value larger than zero. Consequently, the F-measure results in more distinctive
search-curve maxima. Figure 4.1 shows an example of the difference. Therefore, the
F-Measure is used for the regularization parameter search.

4.2.3. Interim Summary

Since classifiers with a large AUC may be worse than classifiers with a smaller AUC, the
AUC is not used for classifier comparison in parameter search. Experiments intimate
that the two remaining measures, Accuracy and F-measure are both applicable for
parameter search. However, since theoretically there might be problems with the
Accuracy and asymmetric datasets and in addition, the F-measure is more sensible
than the Accuracy and leads to more distinctive search-curve maxima, the F-measure
is used for parameter search and classifier comparison in the later experiments.

4.3. Experimental Variance: Repetitions and Averaging

Experiments, which involve cross-validation suffer from experimental variance as de-
scribed in section 3.4. The extend of this variance is examined and visualized. Results
of single repetitions of experiments are compared to results of multiple repetitions.
Since averaging results of multiple repetitions of the same experiment is possible with-
out information loss, when they are normally distributed, results are examined for this

51

−5 0 5 10 15

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

Regularization Parameter Exponent

A
cc

ur
ac

y

●

●

●

●

●

● ●
●

●

●

●
●

●

●
● ● ● ● ● ● ●

●●●●●
●●●●●●●●●●●●●●●●

0.
97

1

1.8

Accuracy

−5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

Regularization Parameter Exponent

F
−

M
ea

su
re

●

●

●

●

●

● ● ● ●
●

●
●

●

●
● ● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●●

0.
90

2

2

F-measure

Figure 4.1.: The Accuracy is not as sensible as the F-measure. In contrast to the first
impression, the results, which are based on the F-measure, are situated in
a much wider range and curve maxima are more distinctive. To see that,
note that the scaling of the vertical axis differs. Both curves for dataset
A with Spectrum kernel and kernel parameter 8.

52

attribute

Figure 4.2a shows the need for variance reduction to gain plausible results: There
is a lot of noise. It is hard to search for maxima in this situation. Consequently, as
described in section 3.4, cross-validation is repeated a certain number of times and
results are averaged.

According to the central limit theorem, when the number of repetitions grows larger,
the distribution of the results of one regularization parameter may be approximated by
the normal distribution. Then, the arithmetic mean may be used to represent the re-
sults, since it converges to the actual value. This guarantees that no information is lost
when averaging results and thereby smoothing the search-curves. Figure 4.2c shows a
box-plot diagram, which supports that the results are nearly normal distributed for a
large number of repetitions: Most values are symmetrically centered around the mean.
Figure 4.2d shows the QQ-Plot4 of the normal distribution and the distribution of the
best found results based on the F-Measure (since this measure is used later on). It
shows that the values are nearly exactly normal distributed. The same plot on the
base of the Accuracy (omitted here) looks similar. Figure 4.2b depicts that averaged
results lead to search-curves, which are much easier to interprete, especially in the
context of parameter search.

In later experiments, the number of repetitions is set to a large number to be as
accurate as possible. Since extends of observed experimental variance is especially
large when using datasets of small sizes, experiments on small datasets are repeated
a larger number of times (∼ 100 to 200). Experiments on larger datasets are re-
peated the necessary number of times to approximate their distribution by the normal
distribution.

4.4. Parameter Search

In the following, observations concerning search for best parameters are presented.
Two types of parameters need to be determined: Regularization parameters, which
influence the margin of the used C-SV classifiers and kernel parameters of the used
string kernels, which influence subsequence lengths used by the kernels.

Regularization parameters are searched for exponentially to the base of two, as
described in section 3.5.2. Resulting search curves, which are generated by plotting
regularization parameter exponent against resulting averaged F-measure, are examined
for differences and commonalities, particularly regarding continuity, maxima, overall
shape and connections between shape and underlying kernel parameter. The expecta-
tion is that the curves are nearly continuous and have only one distinctive maximum
(apart from small maxima caused by noise).

4In a QQ-Plot, quantiles of two random variables are plotted against each other. If the distribution
of these variables equals, the plot shows a straight line. QQ-Plots, in which a normal distributed
variable (theoretical quantiles) is plotted against a random variable (sample quantiles), may be
used as a descriptive test for normal distribution. As QQ-Plots are a standard technique, details
may be found in any statistics textbook.

53

−5 0 5 10 15

0.
72

0.
74

0.
76

0.
78

0.
80

0.
82

0.
84

0.
86

Regularization Parameter Exponent

A
cc

ur
ac

y

● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

0.
85

8

2.7

(a) Single experiment

−5 0 5 10 15

0.
72

0.
74

0.
76

0.
78

0.
80

0.
82

0.
84

Regularization Parameter Exponent

A
cc

ur
ac

y

● ● ● ●

●

●

●
●

●

●
●

● ●

●

●

●
●

● ● ● ●

●
●●
●●
●●●

●●
●●●

●
●
●
●●●●●

0.
84

9

1.9

(b) Repeated 200 times

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●●

●

●●●

●

●

● ●●●●

●●

●

●

●

●

● ●

●

●● ●

−5 −3 −1 1 2 3 4 5 6 7 8 9 11 13 15

0.
75

0.
80

0.
85

Regularization Parameter Exponent

A
cc

ur
ac

y

(c) Box-plot for 200 repetitions

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

0.
83

5
0.

84
0

0.
84

5
0.

85
0

0.
85

5
0.

86
0

0.
86

5

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

(d) QQ-Plot of normal distribution and distribu-
tion of results using the best regularization pa-
rameter

Figure 4.2.: Depiction of experimental variance and its reduction. Note that the results
are nearly normal distributed. Parameter search curve using Accuracy.
Based on dataset B with Spectrum kernel with parameter 2. The QQ-Plot
is built using the F-Measure results of the best regularization parameter.

54

Each search for regularization parameter is done with a fixed kernel parameter.
Then, the latter are searched linearly with step size one, as described in 3.5.2. Plots
are generated by plotting kernel parameter against F-measure. Note that each point
in the resulting plots represents the results of a search for regularization parameter.
The resulting curves are examined for differences and commonalities, particulary in
connection with the results’ underlying kernel.

4.4.1. Regularization Parameter

The search-curves of the search for regularization parameter depict the classical trade-
off between generalization ability and memorizing data. Figure 4.3 shows selected
examples, note that the horizontal axis is scaled exponentially. For low parameter val-
ues, resulting classifiers perform weakly. The same holds for larger parameter values
(up to a certain point, from which larger parameter values do not change the result
anymore. These are discussed later). The parameter, which leads to the best classi-
fier is situated somewhere in between. All observed curves share these attributes. In
particular, starting from the maximum of observed search curves, any change of regu-
larization parameter in direction away from the maximum leads to worse results. This
observation is well-founded theoretically as mentioned above. The described observa-
tions allow the assumption that regularization parameter search-curves only contain
one distinctive maximum, so one of the requirements for the faster, bisection based
search technique is empirically confirmed.

The other requirement, namely, continuity of the search-curves, is also seen as con-
firmed, since all of the reported search-curves are at least nearly continuous. They do
not contain large “jumps”, especially the fine grid-search reveals a very smooth form.

4.4.2. Dimension of Feature Space and Regularization Parameter

When looking at the curves in figure 4.3, it is surprising that at some point, larger
values of the regularization parameter do affect the classifier’s performance anymore.
The curves stay more or less constant from a certain parameter on. Normally, in
context of a trade-off variable between generalization ability and extend memorization,
larger values lead to worse results from a certain point on.

The explanation is the extreme large dimension of the underlying feature space. The
larger a feature space gets, the easier it is to find a separating hyperplane with little or
even no patterns located in its margin. Consequently, when penalty for patterns on the
margin is increased, the hyperplane does not change. Figure 4.4 depicts a search for
best regularization parameter for a small and a large kernel parameter. The large one
induces a feature space, whose dimension is exponentially larger, than the dimension
of the space, which is induced by the small kernel parameter. In feature spaces of
larger dimension, the phenomenon that large values of regularization parameters do
not affect classifiers anymore already occurs with smaller regularization parameters.
Since regularization parameters affect sharpness of the SVM margin, the consequence
of this observation is that in extremely large dimensional feature spaces, soft margin

55

−5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

Regularization Parameter Exponent

F
−

M
ea

su
re

●

●

●

●

●

● ● ● ●
● ●

●
●

● ● ● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●●

0.
90

5

2.3

Dataset A, kernel parameter 7

−5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

Regularization Parameter Exponent
F

−
M

ea
su

re

● ● ● ●

●

● ●

●
● ●

●

● ● ● ● ● ● ● ● ● ●
●●
●
●●
●
●
●
●●
●●●●●●●●●●●

0.
77

9

0.3

Dataset B, kernel parameter 8

−5 0 5 10 15

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

Regularization Parameter Exponent

F
−

M
ea

su
re

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●
● ● ● ●

● ●

●
●
●●●●

●●●
●
●●●●●●●●●●● 0.

96
2

2

Dataset E, kernel parameter 3

−5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

Regularization Parameter Exponent

F
−

M
ea

su
re

●

●

● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●●

0.
80

4

4.1

Dataset F, kernel parameter 4

Figure 4.3.: Plotting F-Measure against regularization parameter exponent leads to
similar looking search-curves. The used kernel parameter is the one, which
leads to the reported best results. The coarse search is colored in blue,
the fine search is colored in red. Note that the curves can be regarded as
nearly continuous.

56

−5 0 5 10 15

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

Regularization Parameter Exponent

A
cc

ur
ac

y

●

●

●

●

●
●

●
● ● ●

●

●
●

●

●

●

●

●

●

●

●

●●●●
●●●●●●●●●●●●●●●●● 0.

96
1

2.7

Small kernel parameter 2

−5 0 5 10 15

0.
86

0.
88

0.
90

0.
92

Regularization Parameter Exponent

A
cc

ur
ac

y

● ●
●

●

●

●

● ●

●

●

● ● ● ● ● ● ● ● ● ● ●

●
●●
●
●●●

●●●●
●●●

●●●
●●●● 0.

93
4

1.5

Larger kernel parameter 12

Figure 4.4.: Depiction, how the dimension of the feature space influences search-curves
for regularization parameters (also see text). Parameter search curve using
the accuracy. Based on dataset A with the spectrum kernel.

C-SV classification leads to results, which are similar to the ones, gained by using
hard-margin classification. This is an interesting observation, since the phenomenon
implies a kind of “saturation” of a problem regarding dimension of the feature space.

4.4.3. Kernel Parameters of Different Kernels

Figure 4.5 shows curves, generated by plotting kernel parameter against classifier per-
formance for datasets A and B. The first observation is that both kernels lead to best
classifiers when using a similar kernel parameter, which seems natural because of the
similar nature of both kernels. In addition, the curves share certain qualitative at-
tributes: A certain dimension of the feature space, and though a certain size of the
kernel parameter, is required for high quality classifiers. At the same time, as the
dimension increases further, performance gets worse.

Yet, this is a very coarse view as there are also differences: The Spectrum kernel
extremely suffers from larger kernel parameters in contrast to the DS-kernel. To see
that, compare the upper and the lower plots of figure 4.5. The results of the Spectrum
kernel reach the worst possible result for larger kernel parameters, while the DS-kernel
looses some of its quality, but still performs good. To explain this behavior, structure
of both kernels has to be compared.

The Spectrum kernel counts subsequences of the length given as kernel parameter.
When this length grows larger, it is more unlikely finding two elements in the underly-
ing dataset that share subsequences of that length. Consequently the resulting feature

57

●

●

●

●

●

●

● ●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●
● ●

●

●

5 10 15 20 25 30

0.
87

0.
88

0.
89

0.
90

Kernel Parameter

F
−

M
ea

su
re

Dataset A, DS-Kernel

●

●

●

●

●

●

●
● ●

●

● ●
●

●
●

●

● ●

5 10 15

0.
71

0.
72

0.
73

0.
74

0.
75

0.
76

0.
77

Kernel Parameter

F
−

M
ea

su
re

Dataset B, DS-Kernel

● ● ● ●
● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25 30

0.
2

0.
4

0.
6

0.
8

Kernel Parameter

F
−

M
ea

su
re

Dataset A, Spectrum Kernel

●

●
●

● ● ●
●

● ●
●

● ●
●

●

●

●

●

●

5 10 15

0.
2

0.
4

0.
6

Kernel Parameter

F
−

M
ea

su
re

Dataset B, Spectrum Kernel

Figure 4.5.: Curves, generated by plotting kernel parameter against F-measure of the
resulting best classifier. Note that every point in the plot includes a search
for best regularization parameter. The performance of the Spectrum ker-
nel is extremely weak when using large kernel parameters. To see that,
note that the vertical axis of the lower plots is scaled differently than the
vertical axis of the upper plots.

58

vectors become more and more sparse while their dimension increases, resulting in a
dot-product that converges to zero. The kernel then is not anymore able to ”perceive”
any structure in the dataset. This is a dilemma: A larger dimension of the feature
space is needed to model relations in complex data while increasing the dimension, by
increasing the kernel parameter, results in worse performance caused by nature of the
kernel.

In contrast, the DS-kernel uses subsequences up to a certain length. When the kernel
parameter is increased, all subsequences, which are shorter, are still represented in the
underlying feature vectors. However, as the dimension increases, performance also
gets worse. The explanation here is more likely to be over-fitting of data. The risk of
over-fitting increases with increasing dimension of the underlying feature space.

4.4.4. Interim Summary

Search curves for the regularization parameter are nearly continuous and only have one
distinctive maximum. All observed search-curves for regularization parameters share
these attributes. In addition, these observations are supported by several theoretical
reasons. As a consequence, the bisection based search technique as described in section
3.6 may be applied to search for regularization parameters to improve its quality and
to reduce its costs. The results for this are described later.

From a certain (large) regularization parameter, any further increment does not
change the resulting classifier’s quality anymore. Consequently, from this points on,
no patterns are situated on the margin and therefore hard- and soft-margin do not lead
to different results. This phenomenon happens “earlier”, meaning at smaller values
of regularization parameters, when the dimension of the underlying feature space is
larger. The classification problem is earlier “saturated” regarding the dimension of
the feature space.

All observed search-curves of kernel parameters share attributes: A certain size of
kernel parameters is needed to build classifiers of good quality. In contrast, when
the kernel parameter is overly large, performance gets worse. Consequently, the re-
sulting curves have only one distinctive maximum. Unfortunately, since they are not
continuous, the bisection based search technique cannot be applied without further
modifications, which are out of scope of this work.

The kernel parameters, which lead to best classifiers are not equal, even-though sim-
liar for both kernels. In contrast, their results behave differently when the parameter
grows: The Spectrum kernel extremely suffers from large parameters, while requiring
a certain size of the latter to perform well. This is a dilemma, since these require-
ments are in conflict. In contrast, the DS-kernel does not suffer from larger kernel
parameters, except for over-fitting problems in large dimensional feature spaces.

4.5. Different Kernels, Different Datasets

In the following, results of the best classifiers, which are found both with the Spectrum
and the DS-Kernel, are given. The expectation is that the DS-kernel outperforms the

59

A B C

Spectrum Kernel

Kernel Par. 7 11 3
Reg. Par. 21.6 = 3.03 20.5 = 1.41 2−0.3 = 0.81

F-Measure 0.8693± 0.0004 0.7656± 0.0016 0.9968± 0
Accuracy 0.9626± 0.0004 0.8751± 0.0009 0.9969± 0
AUC 0.9705± 0.0004 0.9180± 0.0010 0.9983± 0
Sensitivity 0.8230± 0.0010 0.7348± 0.0018 0.9937± 0
Specificity 0.9875± 0.0004 0.9289± 0.0011 1± 0
#SV
P+N

400
205+1151 = 400

1356 = 0.27 155
43+112 = 155

155 = 1 514
648+661 = 514

1309 = 0.39

Distant Segments Kernel

Kernel Par. 10 8 3
Reg. Par. 22.4 = 5.28 20.4 = 1.32 2−0.1 = 0.93

F-Measure 0.9032± 0.0004 0.7764± 0.0016 0.9976± 0
Accuracy 0.9715± 0.0001 0.8786± 0.0009 0.9977± 0
AUC 0.9769± 0.0002 0.9084± 0.0020 0.9988± 0
Sensitivity 0.8800± 0.0007 0.7597± 0.0020 0.9953± 0
Specificity 0.9878± 0.0001 0.9242± 0.0009 1± 0
#SV
P+N

371
205+1151 = 371

1356 = 0.27 114
43.112 = 114

155 = 0.74 371
648+661 = 371

1309 = 0.28

Table 4.3.: Best obtained classifiers for both kernels and datasets A, B and C. With
a 10-fold cross-validation, maximized using F-Measure and sharpened by
500 repetitions. 95-% confidence intervals.

Spectrum Kernel, as described in (Boisvert et al., 2008). In the first instance, all
results are simply stated.

What follows is an analysis and comparison of selected results regarding different
datasets. It is out of scope of this work to analyze all collected data, therefore only
partial results, which are of interest in the context of this work, are considered.

A comparison of dataset B with dataset D, with special attention on common and
uncommon attributes being the cause for different performance quality, is made. A
similar comparison is made regarding dataset E and dataset F, since these lead to dif-
ferent results as the first two. Finally, as it leads to excellent results, a brief description
of dataset C’s results is given.

4.5.1. Best Found Classifiers

Tables 4.3, 4.4 and 4.5 list results, which are obtained on all used datasets with both
kernels.

60

D E F

Spectrum Kernel

Kernel Par. 2 3 4
Reg. Par. 20.5 = 1.41 22.3 = 4.92 23.8 = 13.93

F-Measure 0.9766± 0.0002 0.9611± 0.0002 0.8023± 0.0007
Accuracy 0.9683± 0.0003 0.9625± 0.0002 0.8031± 0.0004
AUC 0.9938± 0.0002 0.9882± 0.0001 0.8880± 0.0004
Sensitivity 0.9667± 0.0004 0.9501± 0.0004 0.8119± 0.0004
Specificity 0.9718± 0.0007 0.9741± 0.0003 0.7945± 0.0010
#SV
P+N

102
179+82 = 102

261 = 0.39 162
368+387 = 162

755 = 0.21 329
309+319 = 329

628 = 0.52

Distant Segments Kernel

Kernel Par. 4 3 3
Reg. Par. 22.8 = 6.96 22.9 = 7.49 23.5 = 11.31

F-Measure 0.9861± 0.0001 0.9605± 0.0002 0.8000± 0.0006
Accuracy 0.9810± 0.0002 0.9619± 0.0002 0.8003± 0.0006
AUC 0.9985± 0.0001 0.9878± 0.0001 0.8888± 0.0003
Sensitivity 0.9832± 0.0002 0.9504± 0.0002 0.8117± 0.0008
Specificity 0.9763± 0.0005 0.9728± 0.0003 0.7892± 0.0009
#SV
P+N

171
179+82 = 171

261 = 0.66 151
368+387 = 151

755 = 0.20 339
309+319 = 339

628 = 0.54

Table 4.4.: Best obtained classifiers for both kernels and datasets D, E and F. With
a 10-fold cross-validation, maximized using F-Measure and sharpened by
500 repetitions. 95% confidence intervals.

A B C D E F

Better Kernel DS DS DS DS BS BS

Difference 0.0330 0.0108 0.0007 0.0095 0.0006 0.0023

Table 4.5.: Best kernels of each dataset and differences to the results of the other
kernel. Note that the differences are not overly large. Based on tables 4.3
and 4.4.

61

4.5.2. Kernel Comparison

As described in (Boisvert et al., 2008), the Distant Segments Kernel usually performs
better than the Spectrum kernel. The difference is statistically significant with a 95%
confidence level in all cases.

However, except for one case, numerical differences between reached results are never
larger than 0.011 regarding F-Measure and 0.02 regarding Sensitivity/Specificity. The
DS-Kernel does about 1% to 2% more correct predictions than the Spectrum Kernel.
This difference comes at some minor computational costs since time complexity to
compute the DS-Kernel is quadratic regarding string length. Time complexity of the
Spectrum kernel is linear. However, both are polynomial.

As mentioned above, an exception is dataset A where the difference regarding F-
Measure is 0.03. The reason for this is mainly the 5% Sensitivity difference, meaning
that the Spectrum Kernel does more FN. This is no surprise since the class label ratio
of dataset A is 205

1151 = 0.18, meaning there is little information regarding positive
patterns. It it noteworthy that dataset A contains the same kind of data as these,
which were used in (Boisvert et al., 2008), in which the DS-kernel is introduced. This
allows the suspicion that it is especially suitable for similar kinds of classification tasks.

Dataset E and dataset F form an exception: The Spectrum kernel leads to better
results. The numerical difference is also minor, however, this illustrates that the DS-
kernel is not a better choice in general. One explanation might be that the kernel
parameter, which leads to best results in both datasets, is small. The structural
differences of the DS-kernel and the Spectrum kernel are less distinctive when using
a small kernel parameter. In particular, when the kernel parameter is very small, the
impact of single letters to the DS-kernel gets larger. From a bioinformatics perspective,
single letters are not very relevant for function of a sequence, so these single letters
distort the DS-kernel. When the kernel parameter grows larger, the impact of this
distortion becomes minor.

When performing classification on sequence based data, multiple kernels should be
considered and compared, if possible. If the latter is not possible, this does not lead
to serious problems, as the area, where results are situated is similar for both kernels.

The reason why the DS-kernel performs better in most cases is likely to be caused by
biological reasons: The three-dimensional structure of a protein is strongly responsible
for its function. For example, bonds to other proteins depend on a suitable “shape” of
parts, which are responsible for connections. A protein’s three-dimensional structure is
influenced by the underlying sequence. The so called fold is the spatial arrangement of
an amino-acid chain. Proteins tend to fold in such way that the overall energy caused
by all involved physical and biochemical processes is minimal. In certain proteins, the
amino-acid chain forms a loop and a certain part of the chain is situated closely to
another certain part. Consequently, the distance of two parts, which are responsible
for a loop is an important factor for a protein’s three-dimensional structure, therefore,
also for its function and though for its class label.

The DS-kernel takes the distance of subsequences into account and is though able to

62

B D B D

Distant Segments Kernel Spectrum Kernel

Kernel Par. 8 4 11 2
Reg. Par. 20.4 = 1.32 22.8 = 6.96 20.5 = 1.41 20.5 = 1.41

F-Measure 0.7764 0.9861 0.7656 0.9766
Accuracy 0.8786 0.9810 0.8751 0.9683
AUC 0.9084 0.9985 0.9180 0.9938
Sensitivity 0.7597 0.9832 0.7348 0.9667
Specificity 0.9242 0.9763 0.9289 0.9718
#SV
P+N

114
43+112 = 0.74 161

179+82 = 0.66 155
43+112 = 1 102

179+82 = 0.39

Table 4.6.: Comparison of Dataset B and D. Based on tables 4.3 and 4.4.

model sequence similarities, which may have an impact on three-dimensional structure.
These are “out of sight” for the Spectrum kernel.

4.5.3. Datasets B and D: Different Disorder and Classification Severity

In the following, results of dataset B and dataset D are compared, since gained results
comply with dataset attributes, which are kind of “inverses” of each other.

Table 4.6 shows the results for dataset B and D. These are the smallest tested
datasets. Dataset B, which contains HIV sequences, is very homogeneous: The se-
quence length difference is only one character. In addition, the sequence based en-
tropy minimum of the dataset equals 0.71, which is much lower than 0.94 of dataset
D. Note that the class label ratio of both datasets is kind of “mirrored”. Dataset
D, which contains two protein super-families, has a huge range of different sequence
lengths. Vividly, this results in a more or less disjunct distribution of dataset D’s
feature vectors in the underlying feature space, in contrast to dataset B, where the
distribution is more overlapping. This is supported by the number of support vectors
needed to express the class relations of both datasets: Dataset B needs more feature
vectors than dataset D, especially when using the Spectrum Kernel. Intuitively, when
data is distributed overlapping, a larger number of support vectors is needed to build
a separating hyperplane.

Both datasets are classified best with the DS-Kernel, however, results do not nu-
merically differ a lot. The best classifier for dataset B has a Specificity of 92% to 93%.
The Sensitivity is at 76% to 73%, which means that the classifier tends to output
“positive” too often. A reason for this could be the small number of positive examples
in dataset B, only 43. However, the results for dataset D interferes with this explana-
tion, since the number of negative examples is also small, while the Sensitivity is at
92%. Dataset D is classified nearly perfect. About 97% to 98% of answers are correct
for both classes.

The optimal kernel parameter for both datasets differs. Dataset B leads to a larger
kernel parameter than dataset D and therefore needs a feature space of larger dimen-

63

E F

Spectrum Kernel

Kernel Par. 3 3
Reg. Par. 22.3 = 4.92 23.8 = 13.93

F-Measure 0.9611 0.8023
Accuracy 0.9625 0.8031
AUC 0.9882 0.8880
Sensitivity 0.9501 0.8119
Specificity 0.9741 0.7945
#SV
P+N

162
368+387 = 0.21 329

309+319 = 0.54

Table 4.7.: Comparison of Dataset E and F. Based on tables 4.3 and 4.4.

sion for good results. This leads to the assumption that dataset B contains more
complex class relations. The number of needed support vectors support this assump-
tion: Dataset B needs the maximum number of SV. This means that data is memorized
as strongly as possible. Normally, such behavior leads to poor generalization ability,
however, the results on unknown data are still good, so the extend of memorization
has not reached a level where classification quality gets worse. This corresponds with
the regularization parameter, which leads to the latter results: It is quite small, so the
margin of the separating hyperplane is large and so is the classifier’s generalization
ability.

The homogeneity of dataset B and the divergence of dataset D are candidates to
cause differences of the presented results. In addition, the latter support the supposi-
tion that the extend of disorder of data, represented by the minimum of the dataset’s
sequence based entropy and its sequence length variance, is a first indicator how well
a string-kernel equipped SVM performs on such data.

4.5.4. Datasets E and F: Similar Disorder and Classification Severity

In the following, datasets E and F are compared, since they lead to different results,
while at the same time, their attributes are similar.

Table 4.7 shows the results. These seem to be similar: Both are nearly perfect
symmetric and have a similar size. In contrast, the length of individual sequences
differs: The mean sequence length is 99 for dataset E and 240 for dataset F. The length
deviation of both datasets is about 1% to 2% of the mean length, so both datasets are
homogeneous regarding their sequence length. The minimum of the sequence based
entropy is also similar with ∼ 0.7, which means that both datasets contain certain
“motifs” that are used multiple times.

However, in contrast to their attributes, results are different to the rest of the
performed experiments in various ways. The first difference is that the Spectrum
Kernel performs better than the Distant Segments Kernel on both datasets. The
difference is numerically small, but still significant with 95% confidence. Both datasets

64

contain drug resistance information of HIV. Note that dataset B also contains this kind
of information but the DS-Kernel works better there.

Second, the datasets’ individual results strongly differ numerically, although both
datasets are quite homogeneous regarding their extend of disorder. The F-Measure
difference is about 0.16, caused by about 14% less Sensitivity and about 18% less
Specificity on dataset E. Since none of the introduced attributes of the datasets is
able to explain these differences regarding classifier quality, no statement may given
in this work. The difference is likely caused by biological reasons. However, during
discussions with the advisors of this work, no obvious explanation could be found. A
consequence is that if a dataset is homogeneous regarding its sequence based entropy
minimum, the underlying classification task is compelled to be severe.

Another observation is that the best classifier for both datasets leads to a small
quotient of support vectors and number of training patterns. Especially for dataset F,
this is surprising, since the performance is rather bad, while at the same time not all
resources (ratio of SVs) are used. An explanation might be that a larger number of SVs
would better fit the data, but at the same time, generalization ability of the classifier
would be reduced, resulting in more errors in classification and therefore to its rejection
during the search for best parameters. This leads to a possible reason for the bad
performance on dataset F: The distribution of the data is strongly overlapping in the
underlying feature space and more accurate fitting would result in more classification
errors.

Another resource, which may be used to increase classifier quality, is the dimension
of the underlying feature space. However, when working with dataset F, the dimen-
sion, which leads to the best results, is small. An explanation might be the best found
regularization parameter, which is quite large with ∼ 14. Large regularization param-
eters cause a thinner margin and therefore less generalization ability. A features space
with larger dimension (and also a larger number of SVs) would cause stronger fitting
of data. But already in a feature space with a low dimension, a large regularization
parameter leads to best results. If the dimension of the underlying feature space would
be larger, the generalization ability would be even worse.

4.5.5. Dataset C: Nearly Perfect Results

Since dataset C is classified nearly perfect, a view on these results and the dataset’s
attributes is given in the following. Table 4.8 shows the results.

The dataset is strongly divergent and was selected with this attribute in mind. The
minimum of its sequence based entropy is the largest of all datasets with 0.96. It
also has the largest deviation of individual sequence lengths (see also histogram in
appendix D). Consequently, resulting feature vectors are distributed extremely afar in
the underlying feature space. These kind of classification tasks are “easy” to solve,
since a hyperplane with a large margin may be found. Parameters of the best found
classifier support this: The regularization parameter is very small, which suggests
that there are only few margin errors, resulting in a large margin and therefore strong
generalization ability of the classifier. In addition, the best found kernel parameter is

65

C

Distant Segments Kernel

Kernel Par. 3
Reg. Par. 2−0.1 = 0.93

F-Measure 0.9976
Accuracy 0.9076
AUC 0.9977
Sensitivity 0.9988
Specificity 0.9953
#SV
P+N

514
648+661 = 0.39

Table 4.8.: Results of Dataset C. Based on table 4.3.

small. It is already possible to model the dependencies in the data in a comparatively
low dimensional feature space.

These results support the supposition that datasets with a large extend of disorder
form the easiest classification problems for SVM.

4.5.6. Interim Summary

Since, one of the intends of this work is to test the introduced approach on real-life
data, the first statement is of general nature: Using the approach on real-life data
leads to very good results. Some datasets are classified nearly perfectly (dataset C
and D) or very accurate (dataset A and E). The worst result (dataset B and F) is still
of practical relevance, since still ∼ 75% to 80% of its content is classified correctly.
Since used datasets cover a wide range of problems, the approach qualifies itself as a
candidate for further research.

The expectation that the DS-kernel is better than the Spectrum kernel is “half
fulfilled”. On the one hand, the DS-kernel leads to better results on more datasets, on
the other hand, the numerical differences are not very distinctive. An exception for
this is dataset A, where the difference is larger.

Theoretically, both kernels become more similar as the used kernel parameter gets
smaller. In addition, when the kernel parameter is very small, the DS-kernel is dis-
tracted by single letters, which then have a large impact on the results, while not
being relevant for sequence function. In general, the DS-kernel is more flexible than
the Spectrum kernel, since it does not have problems with large kernel parameters.
Also, it was argued that distance of certain subsequences, as taken into account by the
DS-kernel, has an impact on three-dimensional structure and therefore on function of
an amino-acid chain.

A large value of the sequence based entropy, which is a measure of a dataset’s
disorder, is an indicator for an “easy” classification problem on all examined datasets.
The inversion of that argument is not true in general, as there are cases where two
datasets with a similar entropy value form classification tasks of different severity

66

(datasets E and F).

4.6. Bisection Based Search for Regularization Parameters

In section 3.6, an algorithm was described, which is guaranteed to find an exclusive
maximum of a continuous function in a given interval and with a given accuracy. The
assumptions made regarding the function, which describes the dependency between
the regularization parameter and the quality of the classifier are fulfilled in the setting
of this work: All presented (and also all observed) curves have only one distinctive
maximum and are nearly continuous except some small part of noise (see figures 4.3,
4.4 or 4.1 for examples). Note that this is an information, which is gained empirically
and is not valid in general. However, it was argued that there are theoretical reasons
for the resulting curve to have these attributes.

The described bisection based optimization of the grid-search was developed at a
later point of this work, so there only was time to test the procedure in context of
searching for regularization parameters with a fixed kernel parameter.

Figure 4.6 shows a bar plot of the number of classifier evaluations, which were
done in the search for the best classifier and depicts that the introduced method is
about twice as fast as the naive grid-search (with naive parameter selection ε = 0,
tolerance = 0.5). Note that this cost reduction factor is reached when using the
introduced method for searching for one parameter. When it is applied to searching
for multiple parameters, this factor is multiplicated with itself for every additional
parameter, becoming kn, where k is the mentioned factor for one parameter and n are
the number of parameters. A further examination of the process and optimizations to
algorithm 3.1 could lead to better factors. However, this is out of scope of this work.

Figure 4.7 compares search curves of the two introduced techniques. Note that the
results are nearly the same, while the faster method’s curve consists of less “evaluation
points”. All observed results were nearly the same but are omitted due to limited space.

67

A B C D E F

grid−search
faster method

Dataset

N
um

be
r

of
 tr

ai
ne

d
S

V
M

s

0
20

00
00

40
00

00
60

00
00

80
00

00
12

00
00

0

Number of runs
A: 32
B: 200
C: 32
D: 60
E: 32
F: 32

Figure 4.6.: Bar plot, which shows the number of classifier evaluations during the
search for the best classifier. Note that only the search for regularization
parameters is performed with the introduced bisection based method. The
individual height of bars for different datasets differs because the number
of repetitions(runs) is chosen differently for each dataset.

68

−5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

Regularization Parameter Exponent

F
−

M
ea

su
re

● ● ● ●

●

● ●
●

● ●
●

● ● ● ● ● ● ● ● ● ●

●

●
●
●
●
●
●
●●●

●●●●●●●●●●●

0.
77

5

0.3

(a) Dataset B, kernel parameter 7, grid-search

−5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

Regularization Parameter Exponent

F
−

M
ea

su
re

●

●

●

●
●●

●

●

●

●

●

●
●

● ●●
●●●●●

0.
77

7

0.225

(b) Dataset B, parameter 7, bisection based search

−5 0 5 10 15

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

Regularization Parameter Exponent

F
−

M
ea

su
re

●
●

●

●

●

●

●
●

●

●

● ●

●
● ●

● ●
●

●
● ●

●
●
●●●●●●

●
●
●●
●●●●

●
●
●●
●

0.
96

2

(c) Dataset E, kernel parameter 5, grid-search

−5 0 5 10 15

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

Regularization Parameter Exponent

F
−

M
ea

su
re

●

●

●

●

●

●

●

●

●

● ●

●

●● ●●
●

●
●
●●

0.
96

1.905

(d) Dataset E, kernel parameter 5, bisection based
search

Figure 4.7.: Classical grid-search compared to the introduced method. The number of
points in the plot equal to the number evaluations needed to find the best
regularization parameter using a specific, fixed kernel parameter. Note
that there are less evaluation points on the right side, while the results
are nearly the same. Left is the grid-search. Both with DS-kernel.

69

5. Summary and further work

In this last chapter, all results of this work are collected. Then, further possible fields
of work are described.

5.1. Summary

In this work, an approach for binary classification of sequence based, biological data
using kernel methods was described. The approach operates on top of a strong and well
researched theoretical fundament, Support Vector Machines. State-of-the-art string-
kernels were used, namely the Spectrum Kernel and the Distant-Segments Kernel.

Different methods for measuring performance of a classifier were introduced. To only
report results, which are statistically relevant, it was argued how to shrink experimen-
tal variance, how to average results and how to obtain tight confidence intervals. These
averaged results were used for parameter search. There were two kinds of parameters
to search for: Regularization parameters concerning SVM-margin and kernel parame-
ters concerning lengths of subsequences. The classical grid-search was described and
shown to have some deficiencies regarding computational costs and accuracy. A bisec-
tion based, faster and more accurate method for maximizing an unknown function was
described, shown to be correct and applied to search for regularization parameters.
To measure disorder of a sequence based dataset, along with length distribution of a
dataset’s individual sequences, an entropy based measure, the sequence based entropy,
was described.

A software was implemented on the base of SHOGUN. It performs all described
search techniques on given datasets and produces a large amount of data on the fly.
The architecture is layered, so any component may be replaced or used in another
context.

In general, usage of string-kernel equipped SVM was reported to be a practical
method for performing classification tasks on sequence based, biological data. Most of
the results were of very good or even near perfect quality. There were two exceptions
where the approach only led to “good” results. However, the latter are still usable
from a practical perspective. In addition, the following results were obtained:

• Of the examined standard single-scalar performance measures, the F-measure
proved to be the most robust one to compare classifiers. Consequently, it was
maximized during the search for best parameters.

• Experimental variance, which expresses in noisy parameter search-curves, was
successfully reduced by repeating single evaluations multiple times. Results of

71

these repetitions were empirically shown to be normal distributed, consequently,
using their arithmetic mean does not distort the final result.

• While searching for regularization parameters, an interesting phenomenon was
observed regarding dimension of the underlying feature space: As its dimension
grows larger, from a certain point on, larger regularization parameters do not
affect performance of a classifier anymore. The larger a feature space dimension
is, the earlier this happens. Consequently, since the used regularization parame-
ter affects margin-sharpness, at this point, no feature vectors are situated on the
margin and therefore hard-margin and soft-margin SVM lead to similar results.

• The two kernels that were compared regarding conceptual differences and their
impact on experimental results: The Spectrum kernel suffers from large kernel
parameters on the one hand, but since kernel parameters are responsible for
the dimension of the underlying feature space, it needs a kernel parameter of a
certain size to perform well on complex data. From this can be concluded that
the Spectrum kernel should not be used when complexity of data is presumed
to be overly large.

In contrast, the DS-kernel does not conceptually suffer from large kernel pa-
rameters. Its performance also gets worse as the dimension of the feature space
grows larger, but the reason for this is more likely to be over-fitting, which rather
happens in a feature space of larger dimension.

• In contrast to the Spectrum kernel, the DS-kernel takes the distance between
subsequences into account. Since in biological data, the distance between these
subsequences has an impact on three-dimensional structure of a sequence, the
DS-kernel is better suited for biological applications. Results were given for all
datasets and kernels. Except for two exceptions, the DS-kernel performed better
than the Spectrum kernel. However, the numerical differences of the reached
results are not large, except for one case.

The numerical difference also was minute in the cases where the Spectrum kernel
led to better results. In addition, in these cases, the kernel parameter, which
led to best results was very small. Since the DS-kernel takes subsequences up
to a certain length into account, when small kernel parameters are used, single
letters form a larger part of all considered subsequences. However, single letters
are biologically not this relevant and therefore they “distract” the DS-kernel,
when a small kernel parameter is used.

• A look a dataset’s attributes gives a first hint, how well the described approach
performs on it. The disorder of a dataset correlates with high performance qual-
ity. Datasets, which are strongly divergent are easier to classify than datasets,
which are homogeneous. Measures of order, which were applied included: The
distribution of individual sequence lengths (see histograms in appendix D), in-
cluding their mean, minimum, maximum and deviation. In addition, high values
of the minimum of the described, biologically motivated sequence based entropy

72

of a dataset are an indicator for disorder and therefore for an “easy” classifica-
tion task. Low values of this minimum indicate a more homogeneous and though
harder to classify dataset. However, similar entropy minima did not compulsory
lead to similar results.

• Grid-search was shown to have drawbacks regarding correctness of its results and
computational costs. A new method, which is based on bisection, was described
and shown to be totally correct when certain requirements are met. In addition,
it reduces the linear computational costs of grid-search to logarithmic costs.

• Search for best regularization parameters resulted in search-curves, which con-
tain one distinctive maximum and which are at least nearly continuous. (Conti-
nuity cannot be shown empirically.) Therefore, all requirements for applying the
introduced bisection based method to search for best regularization parameters,
are met.

• In practice, the bisection based method was empirically shown to be around twice
as fast as naive grid-search for one parameter. In addition, parameter choice of
grid-search drops and therefore the risk that a maximum is “overseen”, or that
computational costs explode. In practice, the bisection based method’s advan-
tages regarding accuracy, did not affect the results, since grid-search parameters
were chosen in such way that the step size was small.

• The bisection based method may be extended to be robust against small local
maxima, or noise. Its total correctness then becomes partial correctness, since
termination is not guaranteed anymore. However, this may still be useful, when
a suitable uncertainty bound is given as parameter and therefore the method
is likely to terminate. Besides, any non-termination may be overcome by only
allowing a maximum number of iterations.

5.2. Further work

The following areas may expose interesting or better results upon further examination:

Implementation:

• Since the implemented software is only a proof-of-concept, a more sophisticated
implementation could be thought of. To the author’s knowledge, there does
not exist a software or software framework, which directly allows to easily clas-
sify different kinds of sequential data using different kinds of kernels, advanced
evaluation techniques and advanced parameter determination techniques.

SHOGUN does offer a lot of the described techniques but lacks for example a
flexible cross-validation framework. As SHOGUN is free software and actively
developed, this could be implemented. Still, SHOGUN is rather a software-
framework than being an end-product. A software that is less technical to use
would be nice for educational and research purposes.

73

• Many of the applied techniques are computational expensive. Off-line classifica-
tion of biological data ist not time critical, however, many of the computations
are independent from each other and could be parallelized. For example the grid-
search for determining best parameters or repetitions of single evaluations would
extremely benefit from parallelization. In addition, in the last years, computer
hardware more and more offers the possibility of benefiting from parallelization
(e.g. multiple-core processors, GPUs). This would allow to process more com-
plex data, or to increase the number of used parameters.

Parameter search:

• The described approach for maximizing an unknown function, which is continu-
ous and has one maximum is yet simple, but already performs better than the
classical grid-search. This technique could be extended, to work more complex
situations, for example in multiple dimensions.

• The algorithm was modified to be robust against small local maxima. The
guaranteed termination vanishes this way. A further modification could be added
in such way that the search interval converges to the smallest possible search
interval around a maximum with a certain uncertainty bound (see figure 3.6).
This way, the total correctness could be restored.

• The problem of determining best parameters for a certain method is not lim-
ited to SVM and kernels, but forms an own field of research. The examination
of methods for determining parameters with alternate approaches, for example
using evolutionary algorithms, and application of these to the current context,
could be considered.

• The function, which describes dependencies between regularization parameter of
a C-SV classifier and its performance was empirically shown to be nearly con-
tinuous. If it could theoretically be shown to be continuous, this would increase
the value of the introduced bisection based method for parameter search even
more, since then, it would be guaranteed to work instead of being a heuristic.

More data: The classification of sequence based data is, as already mentioned, also
used in other fields than biology. The performance of the described approach could
be tested on other problems that involve data based on sequences of characters, for
example in context of computer-vision.

74

Appendices

75

A. Implementation

The following section describes implemented software. Despite from stated third-party
software, all components were written by the author of this work.

Since the intend of this work is to test the described approach of amino-acid classifi-
cation, not to implement a software, the latter is more a proof of concept than a stable
system. The system is built with a layered architecture, therefore single components
may be removed, replaced or used in another context. Interfaces are documented in
the source code. New datasets or kernels may easily be integrated, which allows to
use the software in other situations.

Since the goal was to evaluate different kernels, methods and datasets, a large
amount of data is produced on every run. This data may be used to build opti-
mal classifiers for certain situations. Still, focus is mainly on gaining insight into
underlying problems.

A.1. Used Soft- and Hardware

There exit a vast number of tools that are basically suitable for the desired experiments.
The following were used:

R The main parts of the software are written in an interpreted, script based pro-
gramming language for statistical data analysis available under the GNU-GPL1,
which is called R2. It allows comfortable data processing and has powerful plot-
ting functions. Since R is a interpreted language it suffers from performance
problems when using loops. Therefore, time critical tasks are implemented in
C++ and are embedded into R, which is easily possible via the package Rcpp3.
ROCR (Sing et al., 2005) is a package, which is used in context of ROC-curves.
In Addition, the following packages were used.

Kernlab (Karatzoglou et al., 2004) is a package for R, which provides machine learning
tools. However, it is only used for computation of kernel matrices, since there
was found a bug in the SVM implementation, which caused infinite loops in some
situations.

1http://www.gnu.org/licenses/gpl.html
2http://www.r-project.org
3http://cran.r-project.org/web/packages/Rcpp

77

http://www.gnu.org/licenses/gpl.html
http://www.r-project.org
http://cran.r-project.org/web/packages/Rcpp

Shogun (Sonnenburg et al., 2006) is also a machine learning package for R, which
has the focus on large-scale SVM learning. It has bindings for many languages,
among them R. Among others, it implements the widespread LIBSVM (Chang
and Lin, 2001) SVM implementation and, more importantly, allows usage of
strings as input data and to import custom kernel matrices.

Thanks to the Essen Bioinformatics4 group, the computations were performed on a
node of their cluster Knecht, which consists of a debian5 system that runs on the top
of a 2.6 GHz dual-core AMD Opteron processor and 16 GB of memory.

A.2. Implemented Software

The software’s structure is layered. Below is a hierarchically ordered list of its main
components, along with a brief description of used input, generated output and other
used components. Note that only parameters, which are actually used by components
are listed. In the actual implementation, the main script is called with all parame-
ters, which are used later on. These parameters are forwarded to all called components.

Search for kernels parameter

Used Input Output

Kernel Best kernel parameter

Kernel parameter search range Search curves & stats

Performance Measure to use for comparison Performance measures of best classifier

This is the main script of the software. Here, the grid search, which is described
in section 3.5.1 starts iterating linearly over desired kernel parameters as described in
section 3.5.2. For each kernel parameter of the given kernel, the corresponding gram
matrix of the provided dataset is loaded (details are given later). Then, the best reg-
ularization parameter is searched for, by using the next component in the hierarchy.
The best kernel parameter is selected by maximizing the provided desired performance
measure for comparison. Parameters of the best found classifier, information concern-
ing search and quality of the selected classifier are output.

The following two components are on the same hierarchical level, because the bi-
section based search is a replacement for the grid-search for regularization parameters.

4http://www.uni-due.de/bioinformatik
5http://www.debian.org

78

http://www.uni-due.de/bioinformatik
http://www.debian.org

Naive (grid-)search for regularization parameter

Used Input Output

Coarse search range and step width Best regularization parameter

Fine search range and step width Search curves & stats

Performance Measure to use for comparison

Performs a one-dimensional exponent based search for regularization parameter C
of the SVM as described in section 3.5.2. The step width input parameter determines
the difference between two used parameters in the search, for coarse and fine search.
Every parameter is evaluated using the the next component in the hierarchy. The
best regularization parameter is selected by maximizing the provided desired perfor-
mance measure for comparison and it is returned along with information concerning
the search for it.

Bisection based search for regularization parameter

Used Input Output

Tolerance for termination Best regularization parameter

Uncertainty bound ε Search curves & stats

Performance Measure to use for comparison

Same as above, but with the bisection based approach and its parameters, as de-
scribed in section 3.6.

Classifier evaluation

Used Input Output

Number of runs Averaged performance measures

Calls the component which is next in the hierarchy the provided number of times.
Based on the resulting predicted class labels, performance measures, which are de-
scribed in section 3.3 are calculated, averaged and reported back.

Cross-validation

Used Input Output

Class labels Estimated class labels of all tested partitions

Number of partitions

Cross-validation partitions data regarding their class labels as described in section
3.2. Then these partitions are used for training and testing, as described in the men-
tioned section using the next component in the hierarchy. The resulting predicted
class labels are reported back for every partition.

79

SHOGUN back-end

Used Input Output

Data for training and test Estimated class labels of test data

Kernel matrix (includes kernel parameter)

Regularization parameter

Using gram matrix and regularization parameter, the SHOGUN back-end trains a
SVM with the provided training data and class labels. Then, it performs class label
prediction on test data and reports back the results. SHOGUN always uses its LIB-
SVM implementation here.

A.3. Tools

A.3.1. Kernel Matrix Generation

Normally, when using SVM implementations, the underlying kernel(-function) is eval-
uated for every pair of input data whenever the dot-product of the corresponding
feature vectors is needed. Then, after the program has finished, these values are lost.
This results in a runtime problem when large datasets and complex kernels are used, as
in the context of this work. Consequently, the process of evaluating the kernel values
is moved to a separate part of the software. The gram matrix (see equation 2.21) of
the underlying kernel and the underlying dataset is evaluated and saved on hard-disk
once. Then it is reloaded on demand. While calculating kernel matrices, the fact that
the latter are symmetric is used.

Note that the calculation of a gram matrix presumes that a kernel parameter is
already chosen. Since the optimal kernel parameter is to be searched, the gram ma-
trices for pairs of kernels and datasets are calculated and saved for a reasonable range
of kernel parameters. Then, choosing a kernel parameter corresponds in loading the
corresponding kernel matrix instance.

The kernel matrices of the Spectrum kernel are calculated using kernlab. The matrix
of the DS-kernel is calculated using software, which is provided in (Boisvert et al.,
2008). Note that both kernel matrices are normalized as described in section 2.23.

A.3.2. Entropy Tools

A set of C++ functions generates curves of the sequence based entropy of datasets
(see appendix E and section 3.7). To do this, a bunch of functions is implemented to
accomplish the following tasks on a set of strings:

• Extract the set of all substrings of a given length,

• calculate the number of possible substrings of a given length,

80

• calculate the frequency of occurrence of a substring,

• on the base of the latter, calculate the sequence based entropy.

A.3.3. Single Classifier Evaluation

In addition to the introduced software, a script, which evaluates a single classifier is
provided. It is possible to input a set of parameters (regularization parameter, kernel
parameter, kernel type, cross-validation parameter, number of runs). The correspond-
ing classifier is evaluated and the performance measures are outputted. The tool is
used to obtain tight confidence intervals for classifiers found by the parameter search,
as described in section 3.4.

The tool may be used to verify all results, which are given in this work.

81

B. Proofs

To show the partial correctness of algorithm 3.1, the following two standard theorems
of mathematical calculus are needed. Details can for example be found in (Forster,
2008).

Theorem 1 (Intermediate value theorem). Let f : [a, b]→ R be a continuous function
and let c ∈ R with f(a) < c < f(b). Then there exists a p ∈ [a, b] with f(p) = c.

Theorem 2 (Extreme value theorem). Given a closed and bounded interval [a, b] ⊂ R,
every function f : [a, b] → R, which is continuous in [a, b], attains a maximum and a
minimum in [a, b], each at least once. That is, there exist numbers g, h ∈ [a, b] with
f(g) ≤ f(x) ≤ f(h) for any x ∈ R.

These two theorems can be used to proof the following proposition, which is neces-
sary for algorithm 3.1 to be correct. The proof is inspired by the standard proof for
Rolle’s Theorem in (Forster, 2008).

Proposition 1. Given a closed and bounded interval [a, b] ⊂ R, a function f : R→ R,
which is continuous in [a, b] and has exactly one maximum in]a, b[, and x, y, z ∈ R
with a ≤ x < y < z ≤ b such that f(x) < f(y) > f(z), then argmax f(x) ∈]x, z[.

Proof. Since f(x) < f(y) > f(z), f is not constant in [a, b]. Theorem 1 gives the
existence of z′ ∈ R with y < z′ < z and f(z′) = f(x). Because f is continuous in [a, b]
and therefore also continuous in [x, z′], theorem 2 gives the existence of a maximum
in [x, z′], which is the only maximum of f . Since y ∈]x, z′[and f(x) < f(y) > f(z′), f
has no maximum at the interval borders x and z′. That is, argmax f(x) ∈]x, z′[and
because z′ < z it holds argmax f(x) ∈]x, z[.

Now, the partial correctness of the algorithm can be shown. This is done by showing
the correctness of the following proposition:

Proposition 2. Let f : R → R be a function, which is continuous in [a, b] and has
exactly one maximum in]a, b[. Given the input tolerance, a, b and f , any output o of
algorithm 3.1 fulfills | argmax f(x)− o| < tolerance.

Proof. First is shown that argmax f(x) ∈]a, b[is an invariant of the algorithm. Then
it is shown that the algorithm only terminates when the assumptions are met.

Using the assumptions, argmax f(x) ∈]a, b[holds before the algorithm starts. The
only place where]a, b[ist changed is in the inner if -statement (lines 14 and 15). Using

83

proposition 1 and the assumptions, the invariant holds if f(x) < f(y) > f(z) and
a ≤ x < y < z ≤ b. The first inequality holds because the inner if -statement (line
13). x < y < z holds because a < b⇒ step > 0 and for any i ∈ N, it holds

a+ (i) · step < a+ (i+ 1) · step < a+ (i+ 2) · step⇒ x < y < z.

The variable in the for -loop runs in 0, ..., n−2, where n ≥ 3 throughout the algorithm.
For i = 0 it holds

x = a+ (i) · step = a,

for i = n− 2, it holds

z = a+ (i+ 2) · step = a+ n · b− a
n

= b.

For any i > 0, it holds
x = a+ (i) · step > a,

for any i < n− 2, it holds

z = a+ (i+ 2) · step < b.

Together this gives the complete inequality a ≤ x < y < z ≤ b. So after the if -
statement argmax f(x) ∈]a, b[still holds, which qualifies it as invariant.

Because of the if -statement containing the return-statement (line 3), the algorithm’s
output fulfills proposition 2, since it is only entered if

b− a < tolerance⇒ b− a
2

< tolerance

Together with the invariant follows |a+ b−a
2 − argmax f(x)| < tolerance.

Now, to show the total correctness of the algorithm, the following proposition is
shown to be correct:

Proposition 3. Given the same requirements as in proposition 2, algorithm 3.1 ter-
minates after a finite number of iterations.

To proof this, it is shown that the inner if -statement (line 13) is entered after a
finite number of iterations of the main loop (line 2 to line 24).

Proof. Let e be the position of the only maximum in]a, b[. Then, there exists a
neighborhood α, β with a < α < e < β < b, such that for any x, x′ with α < x < x′ ≤ e,
it holds f(x) < f(x′) and any y, y′ with e ≤ y′ < y < β, it holds f(y) < f(y′).

In the algorithm, n increases by one every iteration if the inner if -statement (line
13) is not entered (trivial). Consequently n may grow such large that

2 · step < min(e− α, β − e)⇔ n > 2 · b− a
min(e− α, β − e)

,

84

and

3 · step > min(e− α, β − e)⇔ n < 3 · b− a
min(e− α, β − e)

,

which is fulfilled by an n with

2 · d b− a
min(e− α, β − e)

e ≤ n ≤ 3 · b b− a
min(e− α, β − e)

c.

Because b− a > min(e− α, β − e), the distance between these borders is at least one,
so there may always be found such an n.

When the counter variable i in the for -loop (line 8) that runs over i = 0, ..., n − 2
becomes

i = be− a
step

c − 2,

which always happens at some point since

e− a
step

− 2 = n · e− a
b− a

− 2 ≤ n− 2

and
e− a
step

− 2 = n · e− a
b− a

− 2 ≥ 2 · b− a
min(e− α, β − e)

· e− a
b− a

− 2 ≥ 0,

it holds
α < a+ (i) · step < a+ (i+ 1) · step < e,

and
e < a+ (i+ 2) · step < β.

Using the fact of the beginning of the proof, when i becomes the above value, it
holds

f(a+ (i) · step) < f(a+ (i+ 1) · step) > f(a+ (i+ 2) · step).

So, the inner if -statement (line 13) is entered and the search interval becomes smaller
by the factor b−a

2·step . Consequently, the search interval becomes smaller by some factor
after a finite number of iterations.

85

C. Amino-acids

Amino-acids 3-letter-code 1-letter-code

Alanine Ala A

Arginine Arg R

Asparagine Asn N

Aspartic acid Asp D

Cysteine Cys C

Glutamic acid Glu E

Glutamine Gln Q

Glycine Gly G

Histidine His H

Isoleucine Ile I

Leucine Leu L

Lysine Lys K

Methionine Met M

Phenylalanine Phe F

Proline Pro P

Serine Ser S

Threonine Thr T

Tryptophan Trp W

Tyrosine Tyr Y

Valine Val V

Figure C.1.: All 20 amino-acids and their letter representations.

87

D. Sequence Length Histograms

Length

F
re

qu
en

cy

32 33 34 35 36 37 38

0
20

0
40

0
60

0
80

0
10

00

Figure D.1.: Sequence length distribution of dataset A. Individual sequence lengths
quite homogeneous. Overall sequence length is short.

89

Length

F
re

qu
en

cy

19.0 19.5 20.0 20.5 21.0

0
20

40
60

80
10

0
12

0

Figure D.2.: Sequence length distribution of dataset D. Individual sequence lengths
are extremely homogeneous. Overall sequence length is very short.

90

Length

F
re

qu
en

cy

150 200 250 300 350

0
5

10
15

20
25

30
35

Figure D.3.: Sequence length distribution of dataset C. Individual sequence lengths
are extremely divergent. There are sequences of large to extremely large
lengths.

91

Length

F
re

qu
en

cy

100 150 200 250 300 350 400 450

0
5

10
15

20

Figure D.4.: Sequence length distribution of dataset D. Individual sequence lengths
are strongly divergent. There are sequences of large to extremely large
lengths.

92

Length

F
re

qu
en

cy

100 102 104 106

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure D.5.: Sequence length distribution of dataset E. Individual sequence lengths do
not differ a lot. Overall length is large.

93

Length

F
re

qu
en

cy

140 160 180 200 220 240

0
50

10
0

15
0

20
0

25
0

30
0

Figure D.6.: Sequence length distribution of dataset F. Apart from few outliners, in-
dividual sequence lengths do not differ a lot. Overall length is very large.

94

E. Curves of Sequence Based Entropy

0 5 10 15 20 25 30 35

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Sequence Length

S
eq

ue
nc

e
B

as
ed

 E
nt

ro
py

Dataset A
Dataset B
Dataset C
Dataset D
Dataset E
Dataset F

Figure E.1.: Entropy Curves of all datasets as described in 3.7. All curves share the
property of having a minimum at a lower sequence length and asymptotic
convergency to one as the sequence length becomes larger. Dataset C and
dataset D are more divergent than the others and though have a higher
minimum.

95

Eidesstattliche Erklärung

Ich versichere hiermit, dass ich die vorliegende Bachelor-Arbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Alle
wörtlich und sinngemäß aus veröffentlichten oder nicht veröffentlichten Schriften ent-
nommenen Stellen sind als solche kenntlich gemacht.

Weiterhin erkläre ich, dass die Arbeit in gleicher oder ähnlicher Form noch keiner
anderen Prüfungsbehörde vorgelegen hat und noch nicht veröffentlicht worden ist.

Ort, Datum Unterschrift

96

Bibliography

Ben-David, S. and Simon, H. (2001). Efficient learning of linear perceptrons. In Advances
in neural information processing systems 13: proceedings of the 2000 conference, page 189.
The MIT Press.

Bishop, C. et al. (2006). Pattern recognition and machine learning. Springer New York:.

Boisvert, S., Marchand, M., Laviolette, F., and Corbeil, J. (2008). HIV-1 coreceptor usage
prediction without multiple alignments: an application of string kernels. Retrovirology,
5:110.

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Cristianini, N. and Shawe-Taylor, J. (2000). An introduction to support Vector Machines: and
other kernel-based learning methods. Cambridge Univ Pr.

Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray, C. (2004). Visual categorization
with bags of keypoints. In Workshop on Statistical Learning in Computer Vision, ECCV,
volume 1, page 22. Citeseer.

Fawcett, T. (2003). ROC graphs: Notes and practical considerations for researchers. Technical
report, HP Laboratories.

Forman, G. and Scholz, M. (2009). Apples-to-apples in cross-validation studies: Pitfalls in
classifier performance measurement. Technical report, HP Laboratories.

Forster, O. (2008). Analysis 1: Differential-und Integralrechnung einer veränderlichen.
Springer.

Graepel, R. (2001). A PAC-Bayesian Margin Bound for Linear Classifiers: Why SVMs work. In
Advances in neural information processing systems 13: proceedings of the 2000 conference,
page 224. The MIT Press.

Heider, D., Appelmann, J., Bayro, T., Dreckmann, W., Held, A., Winkler, J., Barnekow,
A., and Borschbach, M. (2009). A computational approach for the identification of small
GTPases based on preprocessed amino Acid sequences. Technology in cancer research &
treatment, 8(5):333.

Heider, D., Verheyen, J., and Hoffmann, D. (2010). Predicting Bevirimat resistance of HIV-1
from genotype. BMC bioinformatics, 11(1):37.

Hsu, C., Chang, C., Lin, C., et al. (2003). A practical guide to support vector classification.

Jaakkola, T., Diekhans, M., and Haussler, D. (1999). Using the Fisher kernel method to
detect remote protein homologies. In Proceedings of the Seventh International Conference
on Intelligent Systems for Molecular Biology, pages 149–158.

97

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Joachims, T. (1998). Text categorization with support vector machines: Learning with many
relevant features. Machine Learning: ECML-98, pages 137–142.

Karatzoglou, A., Smola, A., Hornik, K., and Zeileis, A. (2004). kernlab – an S4 package for
kernel methods in R. Journal of Statistical Software, 11(9):1–20. Software available at
http://cran.r-project.org/web/packages/kernlab.

Leslie, C., Eskin, E., and Noble, W. (2002). The spectrum kernel: A string kernel for SVM
protein classification. In Proceedings of the Pacific Symposium on Biocomputing, volume 7,
pages 564–575.

Mercer, J. (1909). Functions of positive and negative type and their connection with the theory
of integral equations. Philosophical Transactions Royal Society London.

Merkl, R. and Waack, S. (2009). Bioinformatik Interaktiv: Algorithmen und Praxis. Wiley-
VCH.

Platt, J. (1999). Advances in large margin classifiers, chapter Probabilistic outputs for support
vector machines and comparisons to regularized likelihood methods.

Rhee, S., Taylor, J., Wadhera, G., Ben-Hur, A., Brutlag, D., and Shafer, R. (2006). Genotypic
predictors of human immunodeficiency virus type 1 drug resistance. Proceedings of the
National Academy of Sciences, 103(46):17355.

Rojas, R. and Feldman, J. (1996). Neural networks: a systematic introduction. Springer.

Saigo, H., Vert, J., Ueda, N., and Akutsu, T. (2004). Protein homology detection using string
alignment kernels. Bioinformatics, 20(11):1682.

Schölkopf, B. and Smola, A. (2001). Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge
Univ Pr.

Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T. (2005). ROCR: visualizing classifier
performance in R. Bioinformatics.

Smith, T. and Waterman, M. (1981). Identification of common molecular subsequences. Jour-
nal of molecular biology, 147(1):195–197.

Sonnenburg, S., Rätsch, G., Schäfer, C., and Schälkopf, B. (2006). Large scale multiple kernel
learning. The Journal of Machine Learning Research, 7:1565.

Vapnik, V. (1998). Statistical Learning Theory. Wiley-Interscience, New York.

Vapnik, V. (2000). The nature of statistical learning theory. Springer Verlag.

98

http://cran.r-project.org/web/packages/kernlab

Bibliography

Ben-David, S. and Simon, H. (2001). Efficient learning of linear perceptrons. In Advances
in neural information processing systems 13: proceedings of the 2000 conference, page 189.
The MIT Press.

Bishop, C. et al. (2006). Pattern recognition and machine learning. Springer New York:.

Boisvert, S., Marchand, M., Laviolette, F., and Corbeil, J. (2008). HIV-1 coreceptor usage
prediction without multiple alignments: an application of string kernels. Retrovirology,
5:110.

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Cristianini, N. and Shawe-Taylor, J. (2000). An introduction to support Vector Machines: and
other kernel-based learning methods. Cambridge Univ Pr.

Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray, C. (2004). Visual categorization
with bags of keypoints. In Workshop on Statistical Learning in Computer Vision, ECCV,
volume 1, page 22. Citeseer.

Fawcett, T. (2003). ROC graphs: Notes and practical considerations for researchers. Technical
report, HP Laboratories.

Forman, G. and Scholz, M. (2009). Apples-to-apples in cross-validation studies: Pitfalls in
classifier performance measurement. Technical report, HP Laboratories.

Forster, O. (2008). Analysis 1: Differential-und Integralrechnung einer veränderlichen.
Springer.

Graepel, R. (2001). A PAC-Bayesian Margin Bound for Linear Classifiers: Why SVMs work. In
Advances in neural information processing systems 13: proceedings of the 2000 conference,
page 224. The MIT Press.

Heider, D., Appelmann, J., Bayro, T., Dreckmann, W., Held, A., Winkler, J., Barnekow,
A., and Borschbach, M. (2009). A computational approach for the identification of small
GTPases based on preprocessed amino Acid sequences. Technology in cancer research &
treatment, 8(5):333.

Heider, D., Verheyen, J., and Hoffmann, D. (2010). Predicting Bevirimat resistance of HIV-1
from genotype. BMC bioinformatics, 11(1):37.

Hsu, C., Chang, C., Lin, C., et al. (2003). A practical guide to support vector classification.

Jaakkola, T., Diekhans, M., and Haussler, D. (1999). Using the Fisher kernel method to
detect remote protein homologies. In Proceedings of the Seventh International Conference
on Intelligent Systems for Molecular Biology, pages 149–158.

99

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Joachims, T. (1998). Text categorization with support vector machines: Learning with many
relevant features. Machine Learning: ECML-98, pages 137–142.

Karatzoglou, A., Smola, A., Hornik, K., and Zeileis, A. (2004). kernlab – an S4 package for
kernel methods in R. Journal of Statistical Software, 11(9):1–20. Software available at
http://cran.r-project.org/web/packages/kernlab.

Leslie, C., Eskin, E., and Noble, W. (2002). The spectrum kernel: A string kernel for SVM
protein classification. In Proceedings of the Pacific Symposium on Biocomputing, volume 7,
pages 564–575.

Mercer, J. (1909). Functions of positive and negative type and their connection with the theory
of integral equations. Philosophical Transactions Royal Society London.

Merkl, R. and Waack, S. (2009). Bioinformatik Interaktiv: Algorithmen und Praxis. Wiley-
VCH.

Platt, J. (1999). Advances in large margin classifiers, chapter Probabilistic outputs for support
vector machines and comparisons to regularized likelihood methods.

Rhee, S., Taylor, J., Wadhera, G., Ben-Hur, A., Brutlag, D., and Shafer, R. (2006). Genotypic
predictors of human immunodeficiency virus type 1 drug resistance. Proceedings of the
National Academy of Sciences, 103(46):17355.

Rojas, R. and Feldman, J. (1996). Neural networks: a systematic introduction. Springer.

Saigo, H., Vert, J., Ueda, N., and Akutsu, T. (2004). Protein homology detection using string
alignment kernels. Bioinformatics, 20(11):1682.

Schölkopf, B. and Smola, A. (2001). Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge
Univ Pr.

Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T. (2005). ROCR: visualizing classifier
performance in R. Bioinformatics.

Smith, T. and Waterman, M. (1981). Identification of common molecular subsequences. Jour-
nal of molecular biology, 147(1):195–197.

Sonnenburg, S., Rätsch, G., Schäfer, C., and Schälkopf, B. (2006). Large scale multiple kernel
learning. The Journal of Machine Learning Research, 7:1565.

Vapnik, V. (1998). Statistical Learning Theory. Wiley-Interscience, New York.

Vapnik, V. (2000). The nature of statistical learning theory. Springer Verlag.

100

http://cran.r-project.org/web/packages/kernlab

	Introduction
	Task description
	Biological background and kernel methods
	Literature Overview
	Selected Approach and Placement
	Chapter Overview

	Theoretical preliminaries
	Statistical Learning Theory
	Fundamental Terms
	Risk Minimization
	Empirical Risk Minimization (ERM)
	Structural Risk Minimization (SRM)

	Support Vector Machines
	Separating Hyperplanes
	The Role of the Margin and Optimal Margin Hyperplanes
	Nonlinear Classification and Kernel Trick
	Soft Margin Hyperplanes

	Kernels
	String Kernels
	Spectrum Kernel
	Distant Segments Kernel
	Examples and kernel parameters

	Methods
	Overview
	Cross-Validation, Stratified Cross-Validation
	Performance Measures
	Basic Performance Measures
	Receiver Operating Characteristic and Area Under the Curve
	Performance Measures and Cross-Validation

	Reduction of Experimental Variance
	Parameter Selection
	Grid-Search
	Parameters to Search for
	Different Performance Measures
	Grid-Search: Parameters, Performance and Costs

	Bisection Based Method for Searching for Regularization Parameters
	Motivation: Costs and Accuracy
	Basic Idea: Bisection
	Algorithm
	Parameters, Performance and Costs
	Problems: Continuity & Uncertainty
	Conclusion

	Entropy
	Motivation: Disorder of Data
	Sequence Based Entropy
	Properties

	Experimental Results
	Experiment Description
	Preliminaries: Performance Measures and Variance
	Main Experiment: Search for Best Parameters
	Different Data and Kernels

	Different Performance Measures
	AUC
	Accuracy versus F-measure
	Interim Summary

	Experimental Variance: Repetitions and Averaging
	Parameter Search
	Regularization Parameter
	Dimension of Feature Space and Regularization Parameter
	Kernel Parameters of Different Kernels
	Interim Summary

	Different Kernels, Different Datasets
	Best Found Classifiers
	Kernel Comparison
	Datasets B and D: Different Disorder and Classification Severity
	Datasets E and F: Similar Disorder and Classification Severity
	Dataset C: Nearly Perfect Results
	Interim Summary

	Bisection Based Search for Regularization Parameters

	Summary and further work
	Summary
	Further work

	Appendices
	Implementation
	Used Soft- and Hardware
	Implemented Software
	Tools
	Kernel Matrix Generation
	Entropy Tools
	Single Classifier Evaluation

	Proofs
	Amino-acids
	Sequence Length Histograms
	Curves of Sequence Based Entropy

